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Résume de Thèse

Inférence transductive pour l'interprétation et la

recherche d'images

Vo Dinh Phong

March 3, 2015

A partir de 1950, les chercheurs ont essayé d'inventer des machines intelli-
gent. A cette époque, Alan Turing a introduit le test de Turing. Ce test véri�e la
capacité des machines pour e�ectuer des comportements intelligents et le raison-
nement tels qu'ils sont indiscernables de ceux d'un être humain. Le test devient
bientôt un concept essentiel dans l'intelligence arti�cielle (AI). Beaucoup de
chercheurs a l'époque étaient optimistes quant a la perspective de AI que les
machines pouvaient passer le test dans les 20 ans. Jusqu'à présent, après plus
de 60 ans, le rêve de machines pensantes est toujours insaisissable. Bien que les
réalisations de AI sont juste a petits pas dans la reproduction de l'intelligence
humaine, ils ont ouvert une nouvelle ère de la technologie de l'information.

Être un sous-domaine de AI, l'apprentissage automatique a pour but de con-
cevoir des algorithmes qui améliorent automatiquement leurs comportements
par l'expérience ; l'apprentissage automatique se dé�nit comme un ensemble
de techniques statistiques spécialisées pour les données haut dimensionnelles.
De 1990, des outils d'apprentissage automatique statistiques sont très popu-
laires dans la résolution des problèmes spéci�ques de AI. C'est en e�et une
étape remarquable dans le développement de AI. Bien que le rôle des approches
statistiques a été controversée, ils ont apporté beaucoup de succès récemment.
Diverses applications de l'intelligence arti�cielle ont été inventé et développé
pour un usage quotidien tels que la traduction multi-langue de Google, la re-
connaissance vocale dans Siri d'Apple, la reconnaissance des gestes dans Kinect
de Microsoft. L'apprentissage automatique est l'un des facteurs clés de ces his-
toires de succès.

Parmi les problèmes d'apprentissage automatique, nous sommes intéressés
a la vision de machine. Vision de machine vise a reproduire la capacité de la
cognition humaine étonnante. En raison de l'augmentation rapide de contenu
multimédia sur Internet et interactions profondes entre l'homme et les technolo-
gies information, les applications de vision de machine sont a chaque coin de
la vie moderne. Dans cette thèse, nous présentons nos études sur de nouvelles
méthodes d'apprentissage automatique dans la résolution de deux problèmes
classiques de la vision de machine : image interprétation et de recherche.
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Dans nos études, les algorithmes sont conçus pour apprendre représentations
de données visuelles qui favorisent l'interprétation des images et la recherche
même avec une quantité insu�sante de données. Ce chapitre d'introduction
est consacrée aux discussions sur les contextes, les motivations ainsi que les
contributions de notre recherche. Dans la section 1 nous discutons davantage le
développement chronologique, des dé�s fondamentaux, ainsi que les réalisations
de la vision de machine. Dans la section 2 nous révisons le rôle de l'apprentissage
de la machine dans la résolution de certains problèmes de vision de machine.
Notre motivation ainsi que les contributions sont introduits dans la section 3.
La dernière section 4 explique l'organisation de la thèse.

1 Introduction à la reconnaissance d'objets

Créé au début des années 1960, la vision de machine vise a créer des al-
gorithmes qui reproduisent la capacité humaine a percevoir et reconnaître le
monde visuel. Des objectifs ambitieux de la vision de machine comprennent
la détection, la reconnaissance et l'interprétation des objets visuels en images.
Dans les premiers temps, il était populaire pour voir problème d'interprétation
d'images comme un processus inverse de l'ordinateur de rendu graphique. En
particulier, un pipeline graphique d'ordinateur de rendu est constitué de trois di-
mensions (3D) d'objets dans le monde de coordonnées et en les recouvrant avec
des matériaux et illumination ; ces objets sont en�n projetés sur un écran a deux
dimensions (2D). Objet interprétation, en revanche, récupéré des objets a partir
d'images 2D. Cette perspective d'un problème de vision avait été le courant prin-
cipal dans les premières années de son développement. Basé sur les conclusions
sur l'organisation du cortex visuel humain [Hubel 1988], un problème de cogni-
tion visuelle est présumé comme un processus en trois étapes : première vision,
vision a mi-niveau, et la vision de haut niveau. Le premier stade comprend des
techniques de �ltrage utilisées pour détecter les primitives visuelles telles que
des bords, des couleurs, des textures. L'étape a mi-niveau traite de plus grandes
entités telles que des correctifs et des régions d'image. Le stade de haut niveau
en déduit sémantique de fonctionnalités de niveau intermédiaire tels que l'image
entière forme un sens cohérent vu par la vision humaine. Alors que la phase de vi-
sion précoce a été partiellement exploré par les neuro-scienti�ques et les psycho-
logues de vision [Marr 1982, Livingstone 2008, Boden 2006, Biederman 1982], ils
n'ont pas encore compris stades supérieurs.

1.1 Problèmes du vision de machine

En dépit des e�orts de la communauté de la recherche, un algorithme qui
reconnaît les objets visuels et génériques reste hors de portée. Même si nous
mettons de côté les limites des infrastructures informatiques, les algorithmes
de vision actuels sont encore contestées par de nombreuses di�cultés (voir les
exemples dans la �gure 1) :

� Le premier dé� est due a des conditions d'acquisition. Par exemple, les
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conditions d'éclairage au moment de l'acquisition brûlent soit détails de
l'image (environnement trop lumineux) ou les couvrir par l'ombre.

� Le deuxième dé� est de comprendre le contexte. Objets dans le monde réel
ne se produisent jamais dans l'isolement, mais coexistent avec d'autres ob-
jets et par rapport a des contextes particuliers. En fait, la vision humaine
revient a être tolérant bruit et très imaginative a anticiper le sens d'une
scène, même si les objets constituant ne sont pas complètes [Biederman 1982].
En outre, la littérature en psychologie souligne que la vision humaine
voit toute la scène avant de reconnaître des objets individuels (lois de la
Gestalt [Metzger 2006]).

� Apparence variabilité est un autre grand dé�. Dans la �gure 1(d), il y
a quatre cas avec di�érentes apparences d'un seul concept chaise, bien
que regardant di�éremment, tous ces cas ont une fonctionnalité commune
d'une chaise. Jusqu'à présent, les psychologues n'ont pas découvert une
assez bonne théorie qui explique universellement di�érentes formes de con-
cepts humains [Murphy 2004].

1.2 Les applications de vision de machine

Malgré ces dé�s, la vision de machine de nos jours ont dépassé ce que les
gens imaginaient il y a des décennies. Di�érentes approches et méthodologies ont
contribué a des succès importants de la vision de machine dans la vie réelle. Nous
énumérons ci-dessous quelques exemples de réussite (illustrés sur la �gure 2.)
Dans le secteur manufacturier, le commerce de détail, la conduite autonome, la
sécurité, le divertissement et multimédia sur Internet.

� robots industriels avec capacité de reconnaissance d'objets peuvent rem-
placer l'homme dans les opérations qui nécessitent des manipulations très
précises ou traitement de masse, c'est a dire, l'inspection automatique des
circuits intégrés, prétraitement des aliments, la fabrication métallique.

� intelligents caméras installées sur des véhicules en charge la conduite sécu-
ritaire en détectant les piétons qui traversent, en gardant une distance de
sécurité des voitures a proximité.

� voitures autonomes tels que Google Car 1 ou ceux de la DARPA Urban
Challenge 2 peut se conduire en toute sécurité sur des dizaines de miles
dans les rues urbaines.

� détaillants obtiennent également de béné�cier de technologies de vision.
En installant le long de voies de caisse caméras intelligentes 3, les articles
dans les paniers des clients sont automatiquement détectés et reconnus ; la
caissière n'a pas a déplacer les éléments de la corbeille pour codes a barres
lecture, mais reçoit des informations de facturation a partir de caméras
intelligentes.

1. http://www.google.com/about/jobs/lifeatgoogle/self-driving-car-test-steve-mahan.

html

2. http://www.torcrobotics.com/case-studies/darpa-urban-challenge

3. http://www.evoretail.com/
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(a) conditions d'éclairage faible. (b) L'ensemble uni�ée est
di�érente de la somme des
parties.

(c) Objets non rigides. (d) Variantes intra-classe.

Figure 1 � Certains dé�s en vision de machine. En (a) est quelques captures
inégale-exposition de visages ; ces images provoquent des di�cultés de recon-
naissance de visage depuis de nombreux détails sont perdus a cause de l'ombre.
En outre, estompé les conditions d'éclairage et une surexposition aussi causer
des di�cultés similaires. Un autre dé� est l'incapacité des algorithmes de vision
industrielle dans la capture globale compréhension de l'image. L'exemple en (b)
montre un chien avec le déplacement des jambes sur le terrain, mais même les
meilleurs détecteurs d'objets ne peuvent pas reconnaître que nous faisons. Pour
eux, cette image n'est pas plus que les segments noirs sur un fond blanc. Montré
dans (c) sont le dé� causés par des objets articulés. Des parties d'un tel ob-
jet sont mobiles de sorte qu'ils forment un bon nombre de positions relatives.
Chaque objet articulé doit être suivi par un modèle spécialisé. La multiplicité
des apparences en ce qui concerne le concept est illustré dans (d), bien que
partageant les mêmes fonctionnalités, les quatre chaises propriétaire de tous les
di�érents aspects, a savoir, la forme, le matériau, la structure et la couleur.
Méthodes d'apprentissage actuelles sont encore loin d' abstraction conceptuelle.
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� vision de machine crée également des révolutions dans la guerre et l'explo-
ration spatiale moderne. Drones (Unmanned Aerial Vehicle) remplacent
les combattants humains contrôlée par des patrouilles et la recherche de
tâches, les techniques de vision de machine aident le robot Curiosity nav-
iguer Mars.

� La biométrie est très utile pour le contrôle des frontières, car il peut iden-
ti�er avec précision des centaines de millions d'identités par des visages et
des empreintes digitales correspondant ; cette technique d'adaptation est
mis en ouvre par des algorithmes de vision de machine.

� Placer des caméras intelligentes sur les espaces publics tels que les aéro-
ports et les gares aide a détecter les activités anormales ou bagages aban-
donnés, la surveillance automatique sur les autoroutes aider la régulation
du tra�c.

� Appareils photo numériques compacts o�rent une meilleure qualité de
photo en localisant les visages et détection des visages souriants, stations
de jeux comme Kinect Xbox o�re des jeux interactifs basés sur la localisa-
tion et la reconnaissance des parties du corps en utilisant des algorithmes
e�caces de vision de machine.

2 Apprentissage automatique pour vision de ma-

chine

Au cours des années 1950 et 1960, les objets visuels sont souvent modélisés
comme des primitives géométriques [Mundy 2006]. La popularité de cette mod-
élisation pourrait être due a i) l'idée que la vision de machine est un processus
inverse de l'infographie, et ii) la hausse de la logique formelle et l'intelligence
arti�cielle. Dans l'ouvre de Robert [Roberts 1963], il propose de décrire les ob-
jets dans le monde réel comme des blocs simpli�ées. En particulier, les objets
ont été limités a des formes polyédriques sur un fond uniforme. Cette approche
a ensuite été abandonné en raison de l'incapacité des primitives géométriques
pour caractériser les objets dont les apparences et formes sont compliquées.

Apprentissage statistique devient une alternative. La méthode la plus large-
ment utilisée est réseaux de neurones arti�ciels (ANN) [McCulloch 1943] et
ses applications sont vastes, par exemple la reconnaissance optique de carac-
tères 4, la reconnaissance du visage, et la reconnaissance de plaque [Rowley 1996,
Draghici 1997, Lawrence 1997]. Le c÷ur de ANN est un réseau multicouche
d'unités de neurones et de l'utilisation de l'algorithme de rétro-propagation
a�n d'apprendre les poids de connexion. Cependant, l'algorithme d'optimisa-
tion de rétro-propagation utilisé pour ANN s'avère ine�cace s'il n'y a plus de
trois couches d'un réseau. Les progrès récents de [Krizhevsky 2012, Bengio 2009]
dans les méthodes d'optimisation ont relancé ANN et maintenant les structures
de réseau profondes peut être optimisé de manière e�cace avec plus de trois
couches.

4. reconnaissance optique de caractères (OCR) http://yann.lecun.com/exdb/Lenet/
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(a) Curiosité sur Mars (b) robot autonome (c) détection de visage

(d) Véri�cation des em-
preintes digitales

(e) Articulation suivi du
corps

(f) La reconnaissance d'objet

(g) Reconnaissance optique
de caractères

(h) Détection de piétons (i) Driveless voiture

Figure 2 � Certaines applications commerciales de la vision de machine :(a)
techniques de vision de machine ont été utilisés dans l'exploration de Mars
Rover a lancé en 2003 et Curiosity Rover a lancé en 2011 http://mars.nasa.

gov/msl/ ; (b) Baxter robot peut apprendre a faire des missions simples telles
que le transfert des pièces d'une ligne a, l'emballage des produits en boîtes,
en inspectant les articles défectueux http://www.rethinkrobotics.com/ ; (c)
la plupart des caméras compactes peuvent détecter le visage humain et le
sourire ; (d) les empreintes digitales scanner pour la biométrie identi�cation
http://www.fulcrumbiometrics.com/ ; (e) Kinect détecte et suit les parties
du joueur a�n qu'il / elle peut interagir pleinement avec le jeu basé sur le mou-
vement du corps http://www.xbox.com/kinect ; (f) la caméra détecte automa-
tiquement LaneHawk articles dans le panier entrant et facturer en conséquence
a leur identi�cation http://www.evoretail.com/ ; (g) la reconnaissance op-
tique de caracteres est l'un des premiers problèmes de vision de machine http:
//yann.lecun.com/exdb/lenet/ ; (h) la technologie d'évitement de collision de
Mobileye est capable de � interpréter � une scene en temps réel et de fournir aux
conducteurs une évaluation immédiate http://www.mobileye.com/.
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Comme ANN, le modèle d'apprentissage de Poggio [Riesenhuber 1999] est
également inspiré du mécanisme de travail de cortex visuel humain. Leur ap-
proche, nommé système biologiquement inspiré, suppose que la chaîne de traite-
ment dans notre cortex visuel peut être modélisée comme une hiérarchie de
représentations plus en plus sophistiqués. L'intérieur de chaque cellule, au niveau
le plus bas est la convolution (l'opérateur de SUM) entre les �ltres (par exemple
les �ltres de Gabor directionnel) et l'image d'entrée. A un niveau supérieur,
l'opérateur non linéaire MAX cherche pour la réponse la plus forte parmi les
cellules dans le niveau inférieur. En alternant les deux mécanismes, le système
réalise a la fois la spéci�cité de motif et l'invariance de la traduction et de mise
a l'échelle.

L'apprentissage basé sur l'énergie - [Bakir 2007] a été un cadre e�cace pour
les méthodes paramétriques tels que les champs aléatoires conditionnels et les
réseaux de Markov de marge maximale [Sutton 2012, Wallach 2004, Kindermann 1980].
Ce modele tient compte des dépendances entre les variables en associant une én-
ergie scalaire a chaque observation des variables. Termes d'énergie sont conçus
de telle sorte que leurs valeurs sont abaissées dans la mesure ou des prédic-
tions plus corrects sont obtenus. Un grand avantage de ce modele est la �exi-
bilité dans la conception termes d'énergie qui représentent diverses fonctions de
bas niveau (couleur, texture, forme) ainsi que les relations sémantiques. L'ap-
prentissage basé sur l'énergie - a été appliquée avec succès a la compréhen-
sion de l'image, la segmentation de la classe de l'objet et de l'image anal-
yse [Tighe 2013, Chen 2011, Eigen 2012].

Parmi les modèles d'apprentissage statistique, l'une des méthodes les plus ef-
�caces est Support Vector Machine (SVM) [Cortes 1995]. Il ya plusieurs raisons
pour SVM a être largement utilisés dans les troubles de la vision : i) la méthode
est pour que les données est conditionnée a une distribution gratuite de dis-
tribution ; ii) une bien bonne classi�cateur peut être obtenue avec une quantité
limitée de données de formation, iii) la condition max marge garantit la général-
isation du classi�cateur ; iv) noyau-SVM peut traiter les données non linéaire ;
v) formule SVM est convexe. En outre, la propriété de la modularité de SVM,
permet de devenir une technique prédé�ni pour pratiques de classi�cation de
modèle.

3 Motivations et Contributions

Dans les petites et moyennes échelles, des problèmes de vision de machine
sont généralement bien traités en utilisant des techniques d'apprentissage super-
visé mentionnés ci-dessus. Une condition essentielle est que les données de for-
mation doivent être su�santes pour les algorithmes d'apprendre de bonnes clas-
si�cateurs. Mais dans le long terme, les algorithmes d'apprentissage devraient
être en mesure de faire face a l'absence de données de formation et d'exploiter
les données non marqué qui est abondante. Ce mouvement est du a des change-
ments importants de la façon dont les gens utilisent les technologies de nos jours.
Par exemple, le Web est en train de changer de 1.0 à 2.0 et de personnes dans
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le monde sont de plus en plus impliqués dans les réseaux sociaux. Ils ont été la
création, ajout, et partager des images et des vidéos plus que jamais. Flickr 5, un
site de photo d'hébergement et de partage, reçoit environ 60 millions de photos
téléchargées par mois ; dans les trois ans, le partage photo en ligne Instagram 6

a enregistré plus de 130 millions d'utilisateurs qui ont téléchargé 40 millions de
photos par jour.

Pour les algorithmes de vision pour attraper ces tendances, la recherche sur
les systèmes de vision a grande échelle a été menée. Torralba et ses collègues
ont recueilli une base de données de 80 millions d'images minuscules 7 dans 75
milliers noun mentions �gurant dans la base de données lexicale Wordnet. Cette
base de données vaste et diverse est une bonne source pour les algorithmes
d'apprentissage machine a généraliser. Un autre exemple de base de données
a grande échelle est ImageNet 8. Cette base de données est organisée selon la
hiérarchie de WordNet et contient 21 841 synsets et 14 millions d'images dans
les totaux. ImageCLEF 9 est une autre récupération d'image a grande échelle et
le dé� d'annotation, qui se concentre sur plusieurs domaines d'image tels que
des images médicales, des photos de consommateurs, photos des plantes, et la
vision robotique.

Cependant, cette vague de grand données soulève une question plus impor-
tante :comment ces algorithmes peuvent encore bien performer avec moins de
quantité de données d'apprentissage. Ce problème est pratique parce que le coût
d'annotation est cher pour les bases de données a grande échelle. Comme les
méthodes d'apprentissage supervisées ne sont plus appropriées, il existe dans
l'apprentissage machine l'approche semi-supervisé, celui qui utilise des don-
nées a la fois marqués et non marqués pour l'apprentissage. Toujours a l'aide
de données étiquetées comme l'apprentissage supervisé ne, apprentissage semi-
supervisé utilise également les données non marquée qui peut présenter des in-
formations sur la distribution de densité de données. Parmi les techniques d'ap-
prentissage semi- supervisé, les inductifs et transductives sont les deux grandes
approches. Les anciens induit a partir des données de formation d'une règle de
décision qui s'applique a toutes les données de test invisibles. Ce dernier en
déduit un étiquetage des données d'essai sur la base a la fois sur la formation
et les données de test, puisque cet étiquetage n'est pas disponible ailleurs, sauf
les données d'essai données, les classi�cateurs de formation n'est pas nécessaire.
En outre, l'apprentissage transductive peut donner un étiquetage plus approprié
par rapport a des données de test. Sur la base de cette approche, notre étude
prend en compte : i) la façon d'améliorer l'inférence transductive lorsqu'il est
combiné avec l'apprentissage du noyau, et ii) d'étendre son utilisation a�n d'ap-
prendre représentation sémantique et de faible dimension des bases de données
d'image.

Pour le premier but, deux contributions sont faites. Dans la section 3.1, une

5. www.flickr.com

6. http://instagram.com

7. http://groups.csail.mit.edu/vision/TinyImages/

8. http://www.image-net.org/

9. http://imageclef.org/
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nouvelle formulation de l'apprentissage du noyau transductive est proposé qui
est représenté a au moins compétitive face a des méthodes d'apprentissage clas-
siques. Dans la section 3.2, la méthode proposée est étendu a de nombreuses
applications dans lesquelles leurs spéci�cités sont utilisés pour adapter la for-
mule originale. Pour le deuxième objectif, la troisième contribution est faite, un
nouvel algorithme d'apprentissage sous-espace sémantique est introduit dans la
section 3.3 comme le noyau du modèle de recherche mentale introduit dans la
même section.

3.1 Apprentissage du noyau transductive

Notre première contribution est une méthode de transductive roman pour
la carte de noyau apprentissage. Lorsque les données marqué est rare ou cher,
l'apprentissage d'une bonne classi�cateur devient di�cile. Transductive appren-
tissage est particulièrement adapté a de telles situations. L' objectif de l'appren-
tissage est transductive de déduire les étiquettes de données de test et de ne pas
apprendre une règle de décision générale pour les données invisibles sans l'aide
de données de test. Par conséquent, les approches transductives considèrent a la
fois les données marquées et non marquées dans l'inférence. Sur la base de cette
approche, notre carte de noyau algorithme d'apprentissage peut mieux exploiter
la structure topologique des données, qui permet de di�user des informations
de l'étiquette des données étiquetées a celui non marqué.

En fait les techniques d'inférence transductives deviennent la norme dans
l'apprentissage de la machine en raison de leur succès relatif dans la résolution
de nombreuses applications dans le monde réel [Joachims 1999, Duchenne 2008,
Liu 2009, Joachims 2003]. Parmi eux, les méthodes a noyaux sont particulière-
ment intéressants, mais leur succès reste très dépendante du choix de noyaux.
Ce dernier est généralement fabriqué a la main ou conçu a�n de mieux saisir
la similitude dans les données de formation. L'aspect novateur de notre méth-
ode comprend un nouvel algorithme d'apprentissage de transductive pour la
conception du noyau et de la classi�cation.

Di�érente de la connexes travaux [Maji 2008, Joachims 2002, Asa 2008, Bach 2004,
Wu 2006, Rakotomamonjy 2008, Bach 2008, Sonnenburg 2006], nous n'adop-
tons pas des tours du noyau [Scholkopf 2001] mais apprenons une carte explicite
de noyau basé sur la structure topologique de données étiquetées et non éti-
quetées. Notre approche est donc sans modèle ce qui signi�e pas restreinte aux
noyaux prédé�ni. Elle conduit aussi a de meilleures performances de généralisa-
tion.

Mathématiquement, notre approche est basée sur la minimisation d'une fonc-
tion d' énergie de mélange i) un terme de reconstruction Edonnées (X,BΦ) qui
factorise une matrice de données d'entrée X en tant que produit d'un savant dic-
tionnaire B et un noyau carte appris Φ, ii) un terme de �délité Elabel (Y, f(Φ))
qui assure cohérence des prévisions de l'étiquette f(Φ) avec celles prévues dans
un rez-de-vérité Y, iii) un terme de régularité

∑
(i,j)∈E Elisser (f(Φi), f(Φj)) qui

garantit des étiquettes similaires pour les données voisin qui est prise a partir
du bord mis en E de la k - plus proche graphe de voisinage {V, E} des données,
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(a) L'ensemble de données de jouet-dessus
n'est pas séparable de R2. Compte tenu
de la formation (points jaunes) et le test
(points de données cyan), un hyperplan ne
peut pas séparer les deux classes.

(b) La carte de noyau linéarisé appris par
notre méthode. La répartition des données
permet de di�user des informations de l'é-
tiquette de la marqué a celles non mar-
quées (points rouges et bleus).

Figure 3 � Illustration of learning the transductive kernel map with toy data.

et iv) regularizers ψ (f,Φ) qui limitent la complexité de classi�cateur et le rang
de la carte de noyau. Le problème de minimisation décrit ci-dessus admet la
forme générique suivante et sera précisé dans les chapitres suivants :

min
f,Φ,B

{
Edata (X,BΦ)+Elabel (Y, f(Φ))+

∑
(i,j)∈E

Esmooth (f(Φi), f(Φj))+ψ (f,Φ)

}
.

(1)
La résolution de ce problème de minimisation, il est possible d'apprendre a
la fois un critère de décision et une carte de noyau qui garantit la séparabilité
linéaire dans un espace de grande dimension et de bonnes performances de
généralisation. Des expériences menées sur des classes d'objets segmentation
(Fig. 4) montrent des améliorations par rapport a la ligne de base ainsi que des
travaux connexes sur la base de données de VOC di�cile [Everingham 2010].

3.2 Apprentissage du noyau transductive régularisé

Comme la deuxième contribution, nous étendons le cadre du plan du noyau
apprentissage a l'annotation d'image et de la scène l'interprétation des images.
Pour la première demande, une formule multi- classe est dérivée basée sur le
modèle de classi�cation binaire, qui est mentionné dans la section ci-dessus.
Depuis étiquette multiplicité mene a une feuille de noyau partagé entre clas-
si�cateurs, regularizers supplémentaires peuvent être ajoutés a la formule de
base a�n d'ampli�er les dépendances entre les classes. Dans le cas de l'anno-
tation d'image, nous concevons un régularisateur qui applique co-occurrence
d'étiquettes dans chaque image sur la base des statistiques de co-occurrence
de données de formation. Par conséquent, a la fois la douceur et l'étiquette de
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(a) Annotated image (b) Oversegmentation (c) Segmented foreground
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Figure 4 � Le pipeline de traitement de l'objet interactif segmentation. Initiale-
ment l'utilisateur annote quelques régions représentatives de premier plan de &
arrière-plan dans l'image (a) ; l'image est annoté sur-segmentée en superpixels
(b) ; sur la base des données dont ceux marqués sont les superpixels annotés et
ceux non marqués sont les superpixels annotées , notre apprentissage du noyau
transductive déduit l' objet de premier plan complet comme indiqué dans (c).
En (d) est la visualisation de la carte de noyau appris ; la carte du noyau est
projeté dans l'espace 2D utilisant PCA qui complètent points bleus indiquent
fond données étiquetées et les points rouges carrés indiquer les données de pre-
mier plan étiquetés. Données non marqués (points de triangle) sont a�ectées
de couleur par rapport à leurs distances relatives par rapport aux données éti-
quetées positives et négatives. Fig.(e) montre la carte de prédiction dans lequel
les couleurs chaudes ou froides correspondent à des prévisions plus sûres de la
classe positive ou négative respectivement. Le taux de ce processus d'inférence
de convergence est représenté en (f).

dépendance termes de di�user des informations de l'étiquette non seulement
entre les images climatisées sur les étiquettes individuelles, mais aussi entre les
étiquettes dans chaque image. En d'autres termes, le terme de �nesse soutient
inter-images similitude visuelle et le terme étiquette - dépendance prend en
charge intra-image dépendances statistiques entre les étiquettes.

Pour cette dernière application, qui est l'interprétation des images, nous
utilisons l'apprentissage du noyau transductive pour segmenter et reconnaître
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(a) Avant : ocean, coral,
reefs, people, water ;
Apres : coral, ocean, reefs,
�sh, fan.

(b) Avant : tree, water,
buildings, sky, mountain ;
Apres : tree, roofs, water,
arch, temple.

(c) Avant : tree, sky,
sunset, kauai, train ;
Apres : kauai, locomotive,
train, railroad, sunset.

Figure 5 � Des exemples de l'ensemble de données qui démontrent comment
Corel5K étiquette dépendance pourrait être utilisé pour améliorer la tâche d'an-
notation. Chaque exemple donne les résultats d'annotation avant et après l'ad-
dition du marqueur de dépendance ; mots-clés soulignées sont les bonnes éti-
quettes en italique mots-clés sont les bonnes découvertes en raison du modèle
étiquette-dépendance. Dans la (a), l'apparition de coral, ocean, et reefs signi�e
une forte probabilité que �sh est également présent dans la scène. Dans la (b),
la co-occurrence de labels tels que roof et arch conduit à la présence de temple.
Dans la (c), l'apparition de deux fausses étiquettes kauai et train favorise la
présence d'autres fausses étiquettes locomotive, train et railrooad trop.

des objets visuels dans une scène. Nous réutilisons la formule multi- classe a�n
d' attribuer des étiquettes appropriées pour chaque superpixel image test dans
lesquelles une étiquette de l'information est tirée de superpixels marquées ayant
l'aspect visuel similaire. Depuis la variabilité visuelle peut provoquer une fausse
étiquette, nous ajoutons une nouvelle régularisateur qui exploite signi�cations
référentielles de superpixels. Ces caractéristiques contextuelles non seulement
aident a reconnaître superpixels dont les apparences ne sont pas assez discrim-
inant mais également l'étiquetage prévu plus cohérente a l'égard de règles con-
textuelles implicites par la vision humaine.. L'application est représenté sur la
Fig 5 et 6.

3.3 Sémantique subspatial apprentissage

La troisième contribution est de concevoir un nouvel algorithme d'appren-
tissage sous-espace dédié a la recherche mentale. Les moteurs de recherche vi-
suelle actuels utilisent essentiellement des requêtes basées sur des textes a la
recherche de contenu visuel. Comme les données multimédia sur Internet est
en pleine explosion (c'est a dire, YouTube, Flickrs, Instagram, Facebook), il
est presque impossible de donner annotation a chaque image ou vidéo. Ainsi la
recherche sémantique de données visuelle est la solution la plus probable pour
la recherche multimédia évolutive. Nous utilisons la visualisation de bases de
données [Heesch 2008, Schaefer 2010] comme une alternative, qui s'appuie sur
les données cartographiques de haute aux espaces de faibles dimensions ou les
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Figure 6 � Compréhension de la scène le probleme de la localisation et de
classi�cation des objets visuels dans une image de la scène dans les catégories
connues. Étant donné une image de requête, nous mettons a K images les
plus similaires de la base de données étiquetées. Nous oversegment alors ces
(K + 1) images et obtient superpixels. En connectant superpixels en fonction
de leurs similitudes visuelles, les informations de l'étiquette peut être transféré
de la marqué a celles non marquées. En raison de l'étape d'extraction, objets
inconnus dans l'image de test sont censés trouver leurs exemples similaires dans
les images d'apprentissage, mais ambiguïtés visuelles sont inévitables. A�n de
réduire ces erreurs, relations contextuelles sont prises en compte. En termes de
statistiques, ces relations sont les corrélations de l'étiquette ou de probabilités a
priori sur la disposition spatiale des images de la scène, par exemple, les voitures
sont dans les rues, les fenêtres ne peuvent pas apparaître sans bâtiments, le ciel
est toujours au-dessus des routes, etc

données peuvent être facilement repérés et explorés par l'utilisateur. En dépit
de l'extension des techniques non linéaires de réduction de la dimensionnal-
ité [Tenenbaum 2000, Roweis 2000, Belkin 2001], leur succès dans la base de
données la visualisation des images est limitée a des ensembles de données avec
une sémantique bien contrôlées, comme des poses de visages ou des distorsions
de chi�res ; que ces techniques sont totalement sans surveillance, leur application
aux bases de données génériques [Schaefer 2010, Rubner 2001] produit dimen-
sions sémantique moins qui sont di�ciles a interpréter et a explorer (voir la
�gure 8).

Notre contribution est de présenter un algorithme de recherche mentale ro-
man basé sur l'apprentissage sémantique de sous-espace. Ce dernier est conçu en
utilisant un nouveau principe, que décompose K sémantique de données d'im-
age X ∈ Rn×m et les cartes a partir d'un espace ambiant initiale Rn (liée a
des caractéristiques visuelles de bas niveau, y compris la texture, la couleur et
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la forme) a un sous-espace de sortie de RK engendré par K bien dé�ni bases
sémantiques. Nous rejetons ce problème que l'optimisation de la programma-
tion quadratique convexe, contraint a un simplex engendré par quelques (purs)
endmembers sémantiques, c'est-a-

min
Φ≥0

∑
(i,j)∈E Esmooth(Φi,Φj)

s.t Φi = Yi i = 1, . . . , `∑K
k=1 Φki = 1 i = `+ 1, . . . ,m

(2)

Supposons que l'échantillon de données donnée est prise en charge par un col-
lecteur, le problème d'optimisation (2) préserve la topologie des données quand
elle est mappée de l'espace ambiant dans l'espace sémantique. La sémantique
représentation Φi de chaque échantillon d'entrée Xi peut être considérée comme
le vecteur d'adhésion par rapport a K sémantique dé�nies. Les premiers ` con-
traintes d'égalité, dans lequel ` est le nombre de données étiquetées, état que la
nouvelle représentation Φi 's d'échantillons marqués est égal étiquette vecteurs
Yi s. Nous appelons ces ` samples endmembers parce que chaque échantillon
représente un must uniques sémantique ; données non marquées, en revanche,
peuvent être endmembers ou des mélanges de plusieurs sémantique (voir �g-
ure 7).

L'avantage de l'approche proposée est double : d'une part, il permet de
réduire de manière signi�cative la dimension de l'espace d'entrée (ce qui est
di�cile a explorer ou a visualiser), et d'autre part, il apprend caractéristiques
qui sont sémantiquement interprétable, a savoir, leur valeurs sont fortement
corrélées avec la sémantique dé�nie. Ainsi, la recherche d'une cible mentale
réduit simplement a la numérisation et les données de ciblage en fonction de
leurs coordonnées dans le sous-espace sémantique appris.

4 Aperçu de la thèse

Le reste de la thèse est organisé comme suit.
� Chapitre 2 présente les concepts de base de la théorie de l'apprentissage
et revue de la littérature d'une sélection de techniques d'apprentissage
automatique qui sont pertinents pour notre travail.

� Chapitre 3 présente notre première contribution qui est une méthode d'ap-
prentissage roman carte de noyau. Le chapitre décrit les étapes pour con-
struire la formulation complète, des procédures d'optimisation, les garanties
théoriques et expériences. Interactive segmentation de l'objet est utilisé
pour démontrer l'idée.

� Chapitre 4 et 5 présenter notre deuxième contribution, qui est le prolonge-
ment de la formule binaire proposé au chapitre 3 des problèmes de multi-
classe. Les nouvelles formules sont appliquées a l'image annotation et l'in-
terprétation de scène. Pour chacun des problèmes, regularizers spéci�ques
sont conçus pour exploiter la connaissance préalable de son domaine de
données.
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Figure 7 � Notre méthode apprend une représentation basée simplex donné
une base de données de l'image et K sémantique prédé�nis. Étant donné que
K = 3 et building, car, et plant sont ces sémantique, nous apprenons une nou-
velle représentation des données dans le (K−1) sous-espace de dimension. Cette
nouvelle représentation cartes données étiquetées, également appelés endmem-
bers, dans les sommets de l'unité (K − 1) - simplex tandis que les données non
étiquetées sont mappés a di�érents endroits dans la surface simplex, en fait leurs
coordonnées sont déterminées sur la base de la similitude de leur sémantique
sont contenus par rapport a chacun de la sémantique prédé�nies. Par exemple,
a l'emplacement A(x, y, z), l'image contient seulement building et plant. Par
conséquent, il est mappé a proximité de la building sommet. A l'emplacement
B(x′, y′, z′), l'image contient beaucoup de voitures, donc il est certainement
mappé a proximité de la car sommet. La représentation apprise permet a l'
utilisateur de rechercher une cible mental juste un pointeur en la glissant le long
de la surface de telle sorte que son simplex valeurs de coordonnées a peu près
égales aux valeurs d'appartenance de la cible mental. Images autour de ce poin-
teur sont susceptibles de contenir d'image (s) d'intérêt. Comparez notre modèle
simplex avec les autres modèles de visualisation représentées sur la �gure 8.
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(a) Corel dataset (b) Navigateur d'image hiérarchique Google
Swirl

Figure 8 � Les techniques de visualisation de base de données. En (a) est un
nuage image visualisée dans l'espace tridimensionnel [Rubner 2001] ; la visual-
isation arborescente de Google remous en (b) est une alternative.

� Chapitre 6 est dédié a notre troisième contribution. Le chapitre contient
discussion sur les limites actuelles de la recherche visuelle, la formulation
de notre méthode, les algorithmes d'optimisation pour les ensembles de
données a grande échelle, et des expériences de visualisation de données,
classement de l'image, et le retour de pertinence.

� Chapitre 7 conclut la thèse d'une révision des contributions et des discus-
sions sur les perspectives de thèse.
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Abstract

Dans cette thèse, on s'intéresse à l'apprentissage automatique pour traiter deux

problèmes fondamentaux en vision par ordinateurs. Le premier concerne l'inter-

prétation d'images qui consiste à classer des images ou des objets en catégories.

Les techniques classiques sont généralement inductives et exigent des données d'ap-

prentissage étiquetées a�n d'apprendre explicitement des classi�eurs. Dans certaines

applications, les données d'apprentissage étiquetées sont rares ce qui a�ecte les ca-

pacités de généralisation des classi�eurs sous-jacents. Dans cette thèse on s'intéresse

à l'apprentissage transductif qui vise à estimer la réponse d'un classi�eur implicite

sur un ensemble �ni incluant à la fois les données d'apprentissage et de test.

On présente d'abord un nouveau cadre d'apprentissage transductif des noyaux

pour l'interprétation des images. Cette méthode, contrairement aux noyaux clas-

siques, apprend une projection explicite des noyaux, en exploitant la topologie des

données d'apprentissage et de test. Le problème d'optimisation sous-jacent vise à

minimiser une énergie mélangeant i) un terme de reconstruction, qui décompose

une matrice des données en un produit impliquant un dictionnaire et une nou-

velle représentation liée au noyau appris, ii) un terme d'attache aux données qui

assure la consistance des étiquettes inférées par rapport à celles des données d'ap-

prentissage et iii) un terme de régularisation qui garantit des étiquettes similaires

pour des données semblables. La représentation du noyau et le critère de décision

obtenus garantissent la séparabilité linéaire des données et de bonnes performances

de généralisation. En partant de cette formulation, on propose une extension qui

permet d'exploiter les dépendances contextuelles et les liens sémantiques entre les

catégories d'images a�n d'améliorer encore plus les performances de notre méthode

d'annotation et d'interprétation des images. Cette extension a été motivée par des

expériences en psychologie, qui montrent que les informations contextuelles sont

essentielles et permettent de faciliter la reconnaissance d'objets chez les humains.

Le deuxième problème abordé dans la thèse concerne la recherche mentale dans

les bases d'images. Au départ, on rappelle les limites des paradigmes de recherche

classiques (basés sur les mots clés, exemples visuels et requêtes par croquis) dans

l'interprétation des requêtes mentales des utilisateurs ; notamment lorsque les cibles

mentales des utilisateurs sont di�ciles à exprimer avec des mots clés ou lorsque

les exemples des requêtes ne sont pas disponibles. La solution alternative proposée

construit une représentation qui préserve la topologie globale des données en les pro-

jetant dans un espace Euclidien exprimé à travers une base sémantique. L'avantage

de la méthode est double ; d'une part elle permet de réduire signi�cativement la

dimension des données, et d'autre part, la méthode permet de dé�nir une nouvelle

représentation des données qui est plus facile à exploiter par l'utilisateur a�n de

retrouver sa cible. Ainsi, retrouver une cible mentale revient simplement à scanner

et pointer les données selon leurs coordonnées dans l'espace sémantique appris. Les

expériences e�ectuées en visualisation, ordonnancement et recherche d'images avec
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contrôle de pertinence, sur des bases génériques, montrent que l'approche proposée

est e�ective.



Abstract

In this thesis, we use machine learning in order to tackle two fundamental prob-

lems of computer vision. The �rst one is image interpretation which consists in clas-

sifying images and objects into categories. Conventional inductive learning models

require some training data from which classi�ers are learned. If training data is

scarce, classi�ers hardly generalize well to test data. We are interested in trans-

ductive learning - the approach that aims to estimate the response of an implicit

classi�er at particular test points using both training and test data.

We �rst introduce a new transductive kernel learning framework for image inter-

pretation. Our method, in contrast to many usual kernels, learns an explicit kernel

map based on topological structure of both training and test data. The underly-

ing optimization problem minimizes an energy function mixing i) a reconstruction

term that decomposes a matrix of input data as a product of a learned dictionary

and a kernel map ii) a �delity term that ensures consistent label predictions with

respect to those provided by training data and iii) a smoothness term which guar-

antees similar labels for neighboring data. The resulting decision criterion and the

new kernel map guarantee the linear separability of training data and good gen-

eralization performance. Based on this formulation, we also study how to harness

contextual dependencies between categories into images and how to use their seman-

tic relationships during inference in order to further improve image annotation and

scene understanding performances. This extension was motivated by experiments in

psychology, which have shown that contextual information includes important cues

for human vision in order to recognize objects e�ortlessly.

The second fundamental problem is mental search ; we address the limitation

of current multimedia search paradigms (based on keywords, image examples, and

sketches) in interpreting mental targets of users, especially if those targets are dif-

�cult to express verbally or visual examples are not ready to hand. We introduce a

novel alternative solution which builds a mapping that preserves the global topol-

ogy of the input data while associating them into an Euclidean subspace spanned by

well de�ned semantics. The advantage of the method is twofold. On the one hand, it

signi�cantly reduces the dimensionality of the data ; on the other hand, it de�nes a

new data representation which is more friendly and easy to use. Thereby, searching

for a mental target simply reduces to scanning and targeting data according to their

coordinates in the learned semantic subspace. Quantitative evaluations in data visu-

alization, image ranking and retrieval with relevance feedback, using generic image

databases, show that the proposed method is e�ective.
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Chapitre 1

Introduction

From 1950's, researchers have tried inventing thinking machines. At that time,

Alan Turing introduced the Turing test. The test checks the ability of machines to

perform intelligent behaviors and reasoning such that they are indistinguishable from

those of a human. The test soon becomes an essential concept in arti�cial intelligence

(AI). Many of AI founders at that time were optimistic about the prospect of AI

that machines could pass the test within 20 years. Until now, after more than 60

years, the dream about thinking machines is still elusive. Though achievements of

AI are just at baby steps in reproducing human intelligence, they have opened a

new era for information technology.

Being a sub�eld of AI, machine learning aims to design algorithms that auto-

matically improve their behaviors through experience ; technically, machine learning

is de�ned as a set of statistical techniques specialized for high dimensional and mas-

sive data. From 1990's, statistical machine learning tools are popular in solving

speci�c problems of AI. This is indeed a remarkable milestone in the development

of AI. Although the role of statistical approaches has been controversial, they have

brought many successes recently. Various applications of arti�cial intelligence have

been invented and developed for daily use such as Google's multi-language trans-

lation, speech recognition in Apple's Siri, gesture recognition in Microsoft's Kinect.

Machine learning is one of key factors in those successful stories.

Among problems of machine learning, we are interested in computer vision.

Computer vision aims to reproduce the astonishing cognition ability of human. Due

to the rapid increase of multimedia content on the Internet and deeper interactions

between human and information technologies, applications of computer vision come

to every corner of the modern life. In this thesis we introduce our studies about novel

machine learning methods in solving two classical problems of computer vision :

image interpretation and search.

In our studies, algorithms are designed in order to learn representations of visual

data that promote image interpretation and search even with insu�cient amount of

training data. This introductory chapter is dedicated for discussions about contexts,

motivations as well as contributions of our research. In Section 1.1 we discuss further

the chronological development, fundamental challenges, as well as achievements of

computer vision. In Section 1.2 we revise the role of machine learning in solving some

computer vision problems. Our motivation as well as contributions are introduced

in Section 1.3. The �nal Section 1.4 explains the organization of the thesis.
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1.1 Introduction to Object Recognition

Established in the early 1960s, computer vision aims at creating algorithms that

replicate human ability in perceiving and recognizing the visual world. Ambitious

objectives of computer vision include detecting, recognizing and interpreting visual

objects in images. In the early time, it was popular to see image interpretation prob-

lem as an inverse process of computer graphics rendering. In particular, a computer

graphics pipeline consists of rendering three dimensional (3D) objects in the world

coordinate and covering them with materials and illumination ; these objects are �-

nally projected to a two dimensional (2D) screen. Object interpretation, by contrast,

recovers objects from 2D images. This perspective of a vision problem had been the

main stream in the early years of its development. Based on �ndings about the or-

ganization of the human visual cortex [Hubel 1988], a visual cognition problem is

presumed as a three-stage process : early vision, mid-level vision, and high-level vi-

sion. The early stage comprises �ltering techniques used to detect visual primitives

such as edges, colors, textures. The mid-level stage processes bigger entities such

as image patches and regions. The high-level stage infers semantics from mid-level

features such that the whole image forms a coherent meaning as seen by human

vision. While the early vision stage has been partly explored by neuro-scientists and

vision psychologists [Marr 1982, Livingstone 2008, Boden 2006, Biederman 1982a],

they have not �gured out yet higher stages.

1.1.1 Issues in Computer Vision

In spite of e�orts from the research community, an algorithm that recognizes

well generic visual objects remains out of reach. Even if we put aside limitations

of computational infrastructures, current vision algorithms are still challenged by

many di�culties (see examples in Fig. 1.1) :

� The �rst challenge is due to acquisition conditions. For example, the lighting

conditions at the time of acquisition either burn image details (too bright

environment) or cover them by shadow.

� The second challenge is context understanding. Objects in the real world never

occur in isolation but co-occur with other objects and with respect to partic-

ular contexts. In fact, human vision amounts to be noise tolerant and highly

imaginative in anticipating the meaning of a scene even if constituting objects

are not complete [Biederman 1982a]. Additionally, literature in psychology

points out that human vision sees the whole scene before recognizing individ-

ual objects (Gestalt laws [Metzger 2006]).

� Appearance variability is another big challenge. In Fig. 1.1(d), there are four

instances with di�erent appearances of a single concept chair ; although look-

ing di�erently, all of these instances have a common functionality of a chair.

So far psychologists have not discovered a good enough theory that universally

explains di�erent forms of human concepts [Murphy 2004].
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(a) Ill lighting conditions. (b) The uni�ed whole is di�er-

ent from the sum of the parts.

(c) Non-rigid objects. (d) Intra-class variants.

Figure 1.1 � Some challenges in computer vision. In (a) is some uneven-exposure

captures of faces ; such images cause di�culties for face recognizers since many de-

tails are lost due to shadow. Besides, dimmed lighting condition and over-exposure

also cause similar di�culties. Another challenge is the inability of machine vision

algorithms in capturing holistic image understanding. The example in (b) shows a

dog with moving legs on the ground ; however, even the best object detectors can-

not recognize as we do. For them, that picture is no more than black segments on

a white background. Shown in (c) are the challenge caused by articulated objects.

Parts of such an object are movable so that they form lots of relative positions.

Every articulated object must be tracked by a specialized model. The multiplicity

of appearances with respect to concept is shown in (d) ; although sharing the same

functionality, the four chairs own every di�erent appearances, i.e., the shape, ma-

terial, structure, and color. Current learning methods are still far from conceptual

abstraction.
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1.1.2 Applications of Computer Vision

Despite those challenges, computer vision nowadays have moved beyond what

people imagined decades ago. Various approaches and methodologies have been con-

tributing to important successes of computer vision in real life. We list below some

successful examples (illustrated in Fig. 1.2) in manufacturing, retailing, autonomous

driving, security, entertainment, and Internet multimedia.

� Industrial robots with object recognition ability can replace human in oper-

ations that require very precise manipulations or mass processing, i.e., auto-

matic inspection of integrated circuits, food preprocessing, metal fabrication.

� Smart cameras installed on vehicles support safe driving by detecting crossing

pedestrians, keeping safe distances from nearby cars.

� Autonomous cars such as Google Car 1 or those of the DARPA Urban Chal-

lenge 2 can drive themselves safely over dozens of miles in urban streets.

� Retailers also get bene�t from vision technologies. By installing along checkout

lanes smart cameras 3, items in customers' baskets are automatically detected

and recognized ; the cashier does not have to move items out of the basket for

barcode reading but receives billing information from smart cameras.

� Computer vision also creates revolutions in modern warfare and space ex-

ploration. Drones (Unmanned Aerial Vehicle) are replacing human-controlled

�ghters in patrolling and seeking tasks ; computer vision techniques help robot

Curiosity navigate the Mars.

� Biometrics is very useful for border control because it can accurately identify

hundreds of millions of identities by matching faces and �ngerprints ; this

matching technique is implemented by computer vision algorithms.

� Placing smart cameras on public areas such as airports and stations helps

detecting abnormal activities or abandoned baggages ; automatic surveillance

on highways help regulating tra�c.

� Compact cameras provide better photo quality by localizing faces and detect-

ing smiling faces ; game stations such as Xbox's Kinect provides interactive

games based on localizing and recognizing body parts using e�cient computer

vision algorithms.

1.2 Machine Learning for Computer Vision

During 1950s and 1960s, visual objects were often modeled as geometric primi-

tives [Mundy 2006]. The popularity of this modeling might be due to i) the thought

that computer vision is an inverse process of computer graphics, and ii) the rise of

formal logic and arti�cial intelligence. In Robert's work [Roberts 1963], he proposed

to describe objects in the real world as simpli�ed blocks. In particular, objects were

1. http://www.google.com/about/jobs/lifeatgoogle/self-driving-car-test-steve-mahan.

html

2. http://www.torcrobotics.com/case-studies/darpa-urban-challenge

3. http://www.evoretail.com/

http://www.google.com/about/jobs/lifeatgoogle/self-driving-car-test-steve-mahan.html
http://www.google.com/about/jobs/lifeatgoogle/self-driving-car-test-steve-mahan.html
http://www.torcrobotics.com/case-studies/darpa-urban-challenge
http://www.evoretail.com/
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(a) Curiosity on Mars (b) Autonomous robot (c) face detection

(d) Fingerprint veri�cation (e) Articulation body tracking (f) Item recognition

(g) Optical character recogni-

tion

(h) Pedestrian detection (i) Driveless car

Figure 1.2 � Some commercial applications of computer vision : (a) Computer vi-

sion techniques have been used in Mars Exploration Rover launched in 2003 and

Curiosity Rover launched in 2011 http://mars.nasa.gov/msl/ ; (b) Baxter robot

can be taught to do simple missions such as transferring parts from line to line, pack-

ing products into boxes, inspecting defective items http://www.rethinkrobotics.

com/ ; (c) mostly compact cameras can detect human face and smile ; (d)Fingerprints

scanner for biometrics identi�cation http://www.fulcrumbiometrics.com/ ; (e)

Kinect detects and tracks parts of the player so that he/she can fully interact

with the game based on body movement http://www.xbox.com/kinect ; (f) The

LaneHawk camera automatically detect items in the incoming basket and bill

them accordingly to their identi�cation http://www.evoretail.com/ ; (g) Opti-

cal character recognition is one of the early problems of computer vision http:

//yann.lecun.com/exdb/lenet/ ; (h) Mobileye's collision avoidance technology is

able to �interpret� a scene in real-time and provide drivers with an immediate eval-

uation http://www.mobileye.com/.

http://mars.nasa.gov/msl/
http://www.rethinkrobotics.com/
http://www.rethinkrobotics.com/
http://www.fulcrumbiometrics.com/
http://www.xbox.com/kinect
http://www.evoretail.com/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://www.mobileye.com/
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restricted to polyhedral shapes on a uniform background. This approach was then

abandoned due to the inability of geometric primitives to characterize objects whose

appearances and shapes are complicated.

Statistical learning becomes an alternative. The most widely-used method is

arti�cial neural networks (ANN) [McCulloch 1943] and its applications are vast,

for example optical character recognition 4, face recognition, and plate recogni-

tion [Rowley 1996, Draghici 1997, Lawrence 1997]. The heart of ANN is a multi-

layer network of neuron units and the use of back-propagation algorithm in order

to learn connection weights. However, the back-propagation optimization algorithm

used for ANN turns out to be ine�cient if there are more than three layers in a

network. Recent advances [Krizhevsky 2012, Bengio 2009] in optimization methods

have revived ANN and now deep network structures can be optimized e�ciently

with more than three layers.

Like ANN, the learning model of Poggio [Riesenhuber 1999] is also inspired from

the working mechanism of human visual cortex. Their approach, named as biolog-

ically inspired system, assumes that the processing chain in our visual cortex can

be modeled as a hierarchy of increasingly sophisticated representations. Inside ev-

ery cell at the lowest level is the convolution (the SUM operator) between �lters

(for example directional Gabor �lters) and the input image. At a higher level, the

nonlinear MAX operator seeks for the strongest response among the cells in the

lower level. By alternating the two mechanisms, the system achieves both pattern

speci�city and invariance to translation and scaling.

Energy-based learning [Bakir 2007] has been an e�ective framework for para-

metric methods such as conditional random �elds and maximum margin Markov

networks [Sutton 2012, Wallach 2004, Kindermann 1980]. This model captures de-

pendencies between variables by associating a scalar energy to each observation of

the variables. Energy terms are designed such that their values are lowered as long

as more correct predictions are achieved. A big advantage of this model is the �exi-

bility in designing energy terms which account for various low-level features (color,

texture, shape) as well as semantic relationships. Energy-based learning has been

successfully applied to image understanding, object class segmentation, and image

parsing [Tighe 2013, Chen 2011a, Eigen 2012b].

Among statistical learning models, one of the most successful methods is Sup-

port Vector Machine (SVM) [Cortes 1995]. There are several reasons for SVM to be

widely used in vision problems : i) the method is distribution-free so that data is

conditioned on any distribution ; ii) a considerably good classi�er may be obtained

with a limited amount of training data ; iii) the max-margin condition guarantees

the generalization of the classi�er ; iv) kernelized SVM can handle nonlinear data ;

v) SVM formula is convex. Additionally, the modularity property of SVM, where

feature mapping (or kernelization [Shawe-Taylor 2004, Scholkopf 2001b]) and classi-

�cation steps are separated, makes it becoming an o�-the-shelf technique for pattern

classi�cation practices.

4. optical character recognition (OCR) http://yann.lecun.com/exdb/lenet/

http://yann.lecun.com/exdb/lenet/
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1.3 Motivation and Contributions

At small and medium scales, computer vision problems are usually well handled

using supervised learning techniques mentioned above. An essential condition is that

training data must be su�cient for those algorithms to learn good classi�ers. But

in the long run, learning algorithms should be able to cope with the lack of training

data and to exploit unlabeled data which is abundant. This movement is due to

substantial changes of how people use technologies nowadays. For instance, Web is

changing from 1.0 to 2.0 and people in the world are more and more involved in social

networks. They have been creating, uploading, and sharing images and videos more

than ever. Flickr 5, a website of photo hosting and sharing, gets about 60 millions

photos uploaded per month ; within three years, the online photo sharing Instagram 6

has registered over 130 million users who have uploaded 40 million photos per day.

In order for vision algorithms to catch these trends, research on large-scale vision

systems has been conducted. Torralba and his colleagues have collected a database

of 80 million tiny images 7 across 75 thousands noun entries listed in Wordnet lexical

database. Such a vast and diversed database is a good source for machine learning

algorithms to generalize. Another example of large-scale database is ImageNet 8.

This database is organized according to the WordNet hierarchy and contains 21841

synsets and 14 million images in totals. ImageClef 9 is another large scale image

retrieval and annotation challenge, which focuses on multiple image domains such

as medical images, consumer photos, plant photos, and robot vision.

However, this wave of big data raises a more important question : how those

algorithms can still perform well with less amount of training data. This problem is

practical because annotation cost is expensive for large-scale databases. As super-

vised learning methods are no longer appropriate, there exists in machine learning

the semi-supervised approach, the one that uses both labeled and unlabeled data

for learning. Still using labeled data as supervised learning does, semi-supervised

learning also uses unlabeled data which may exhibit some information about den-

sity distribution of data. Among semi-supervised learning techniques, inductive and

transductive ones are the two major approaches. The former induces from training

data a decision rule which is applicable to any unseen test data. The latter infers

a labeling for test data based on both the training and test data ; since this label-

ing is not available elsewhere except the given test data, training classi�ers is not

necessary. Moreover, transductive learning may give a more suitable labeling with

respect to test data. Based on this approach, our study considers : i) how to improve

transductive inference when combined with kernel learning, and ii) to extend its use

in order to learn semantic and low-dimensional representation of image databases.

For the �rst goal, two contributions are made. In Section 1.3.1, a new transduc-

5. www.flickr.com

6. http://instagram.com

7. http://groups.csail.mit.edu/vision/TinyImages/

8. http://www.image-net.org/

9. http://imageclef.org/

www.flickr.com
http://instagram.com
http://groups.csail.mit.edu/vision/TinyImages/
http://www.image-net.org/
http://imageclef.org/
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tive kernel learning formulation is proposed which is shown to be at least competitive

against conventional learning approaches. In Section 1.3.2, the proposed method is

expanded to many applications in which their speci�cities are used to adapt the orig-

inal formula. For the second goal, the third contribution is made ; a new semantic

subspace learning algorithm is introduced in Section 1.3.3 as the core of the mental

search model introduced in the same section.

1.3.1 Transductive Kernel Learning

Our �rst contribution is a novel transductive method for kernel map learning.

When labeled data is scarce or expensive, learning a good classi�er becomes di�-

cult. Transductive learning is particularly suitable for such situations. The goal of

transductive learning is to infer labels of test data and not to learn a general deci-

sion rule for unseen data without using test data. Hence, transductive approaches

consider both labeled and unlabeled data in inference. Based on this approach, our

kernel map learning algorithm can exploit better the topological structure of the

data, which helps di�using label information from the labeled data to the unlabeled

one.

In fact transductive inference techniques are becoming standard in ma-

chine learning due to their relative success in solving many real-world applica-

tions [Joachims 1999, Duchenne 2008, Liu 2009b, Joachims 2003]. Among them,

kernel-based methods are particularly interesting but their success remains highly

dependent on the choice of kernels. The latter are usually handcrafted or designed in

order to capture better similarity in training data. The novel aspect in our method

includes a new transductive learning algorithm for kernel design and classi�cation.

Di�erent from the related works [Maji 2008, Joachims 2002a, Asa 2008,

Bach 2004, Wu 2006, Rakotomamonjy 2008, Bach 2008b, Sonnenburg 2006], we do

not adopt kernel tricks [Scholkopf 2001b] but learn an explicit kernel map based on

the topological structure of labeled and unlabeled data. Our approach is, therefore,

model-free which means not restricted to o�-the-shelf kernels. It also leads to better

generalization performances.

Mathematically, our approach is based on the minimization of an energy function

mixing i) a reconstruction term Edata (X,BΦ) that factorizes a matrix of input data

X as a product of a learned dictionary B and a learned kernel map Φ, ii) a �delity

term Elabel (Y, f(Φ)) that ensures consistent label predictions f(Φ) with those pro-

vided in a ground-truth Y, iii) a smoothness term
∑

(i,j)∈E Esmooth (f(Φi), f(Φj))

that guarantees similar labels for neighboring data which is taken from the edge

set E of the k-nearest neighbor graph {V, E} of the data (see Fig. 2.6), and iv)

regularizers ψ (f,Φ) which restrict classi�er complexity and kernel map's rank. The

minimization problem described above admits the following generic form and will



1.3. Motivation and Contributions 9

(a) The toy dataset above is not separable

in R2. Given training (yellow dots) and test

(cyan dots) data, a hyperplane cannot sepa-

rate the two classes.

(b) The linearized kernel map learned by our

method. The distribution of the data helps

di�using label information from the labeled

to the unlabeled ones (red and blue dots).

Figure 1.3 � Illustration of learning the transductive kernel map with toy data.

be clari�ed in subsequent chapters :

min
f,Φ,B

{
Edata (X,BΦ)+Elabel (Y, f(Φ))+

∑
(i,j)∈E

Esmooth (f(Φi), f(Φj))+ψ (f,Φ)

}
.

(1.1)

Solving this minimization problem makes it possible to learn both a decision cri-

terion and a kernel map that guarantee linear separability in a high dimensional

space and good generalization performance (see Fig. 1.3). Experiments conducted

on object class segmentation show improvements with respect to baseline as well as

related works on the challenging VOC database [Everingham 2010].

1.3.2 Regularized Transductive Kernel Learning

As the second contribution, we extend the framework of kernel map learning

to image annotation and scene image interpretation. For the former application,

a multi-class formula is derived based on the binary classi�cation model, which is

mentioned in the section above. Since label multiplicity leads to a shared kernel map

between classi�ers, additional regularizers can be added to the basic formula in order

to amplify dependencies between classes. In the case of image annotation, we design

a regularizer that enforces co-occurrence of labels within every image based on co-

occurrence statistics from training data. Consequently, both smoothness and label-

dependency terms di�use label information not only between images conditioned

on individual labels but also between labels within every image. In other word, the

smoothness term supports inter-image visual similarity and the label-dependency

term supports intra-image statistical dependencies between labels.

For the latter application, which is image interpretation, we use transductive
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Figure 1.4 � Scene understanding is the problem of localizing and classifying visual

objects in a scene image into known categories. Given a query image, we retrieve K

most similar images from the labeled database. We then oversegment those (K + 1)

images and obtain superpixels. By connecting superpixels based on their visual

similarities, label information can be transfered from the labeled to the unlabeled

ones. Due to the retrieval step, unknown objects in the test image are expected

to �nd their similar instances in the training images ; however, visual ambiguities

are unavoidable. In order to reduce such errors, contextual relationships are taken

into account. In terms of statistics, these relationships are label correlations or prior

probabilities about spatial layout of scene images ; for example, cars are on streets,

windows cannot appear without buildings, sky is always on top of roads, etc.

kernel learning in order to segment and recognize visual objects in a scene. We reuse

the multi-class formula in order to assign appropriate labels for every superpixel

in test image in which label information is taken from labeled superpixels having

similar visual appearance. Since visual variability may cause false labeling, we add a

new regularizer that exploits referential meanings of superpixels. These contextual

features not only help recognize superpixels whose appearances are not discrimi-

native enough but also make the predicted labeling more coherent with respect to

contextual rules implied by human vision. The application is depicted in Fig. 1.4.

1.3.3 Semantic Subspace Learning

The third contribution is about designing a new subspace learning algorithm

dedicated to mental search. Current visual search engines basically use text-based

queries to search for visual content. As multimedia data on the Internet is explod-

ing (i.e., YouTube, Flickrs, Instagram, Facebook), it is almost infeasible to give
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annotation to every image or video. Thus semantic search of visual data is the

most probable solution for scalable multimedia retrieval. We use database visual-

ization [Heesch 2008, Schaefer 2010] as an alternative, that relies on mapping data

from high to low dimensional spaces where data can be easily spotted and explored

by the user. In spite of the extension of nonlinear dimensionality reduction tech-

niques [Tenenbaum 2000, Roweis 2000, Belkin 2001], their success in image database

visualization is limited to datasets with well controlled semantics such as poses of

faces or distortions of digits ; as these techniques are totally unsupervised, their ap-

plication to generic databases [Schaefer 2010, Rubner 2001] produces �semantic-less�

dimensions which are di�cult to interpret and explore (see Fig. 1.6).

Our contribution is to introduce a novel mental search algorithm based on seman-

tic subspace learning. The latter is designed using a novel principle, that unmixes

K semantics from image data X ∈ Rn×m and maps them from an initial ambient

space Rn (related to low level visual features including texture, color and shape) to

an output subspace of RK spanned by K well de�ned semantic bases. We cast this

problem as convex quadratic programming optimization, constrained in a simplex

spanned by few (pure) semantic endmembers, i.e.,

min
Φ≥0

∑
(i,j)∈E Esmooth(Φi,Φj)

s.t Φi = Yi i = 1, . . . , `∑K
k=1 Φki = 1 i = `+ 1, . . . ,m

(1.2)

Assume that the given data sample is supported by some manifold, the optimization

problem (1.2) preserves the topology of the data when it is mapped from the ambient

space into the semantic space. The semantic representation Φi of every input sample

Xi can be seen as the membership vector with respect to K de�ned semantics. The

�rst ` equality constraints, in which ` is the number of labeled data, state that the

new representation Φi's of labeled samples equals label vectors Yi's. We call those

` samples endmembers because every sample must represents a unique semantic ;

unlabeled data, in contrast, can be endmembers or mixtures of several semantics

(see Fig. 1.5).

The advantage of the proposed approach is twofold ; on the one hand, it signif-

icantly reduces the dimensionality of the input space (which is di�cult to explore

or visualize), and on the other hand, it learns features which are semantically inter-

pretable, i.e., their values are highly correlated with the de�ned semantics. Thereby,

searching for a mental target simply reduces to scanning and targeting data accord-

ing to their coordinates in the learned semantic subspace.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows.

� Chapter 2 presents basic concepts of learning theory and literature review of

a selection of machine learning techniques that are relevant to our work.



12 Chapitre 1. Introduction

Figure 1.5 � Our method learns a simplex-based representation given an image

database and K prede�ned semantics. Given that K = 3 and building, car, and

grass are those semantics, we learn a new representation of the data in the (K −
1) dimensional subspace. This new representation maps labeled data, also called

endmembers, into vertices of the unit (K − 1)-simplex while unlabeled data are

mapped to di�erent locations in the simplex surface ; in fact their coordinates are

determined based on how similar their semantic contents are with respect to each

of the prede�ned semantics. For example, at the location A(x, y, z), the image just

contains building and plant. Therefore it is mapped near to the building vertex.

At the location B(x′, y′, z′), the image contains a lot of cars, thus it is certainly

mapped near to the car vertex. The learned representation allows the user to search

for a mental target just by sliding a pointer along the simplex surface such that its

coordinate values approximately equal to membership values of the mental target.

Images surrounding this pointer are likely to contain image(s) of interest. Compare

our simplex model with other visualization models shown in Fig. 1.6.
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(a) Corel dataset (b) Hierarchical image browser Google Swirl

Figure 1.6 � Techniques for database visualization. In (a) is an image cloud vi-

sualized in three dimensional space [Rubner 2001] ; the tree-based visualization of

Google Swirl in (b) is an alternative.

� Chapter 3 introduces our �rst contribution which is a novel kernel map learn-

ing method. The chapter describes steps to build the complete formulation,

optimization procedures, theoretical guarantees, and experiments. Interactive

object segmentation is used to demonstrate the idea.

� Chapter 4 and 5 present our second contribution, which is the extension of

the binary formula proposed in Chapter 3 to multi-class problems. The new

formulas are applied to image annotation and scene interpretation. For each

of the problems, speci�c regularizers are designed in order to exploit prior

knowledge from its data domain.

� Chapter 6 is dedicated to our third contribution. The chapter contains discus-

sion about current limitations of visual search, the formulation of our method,

optimization algorithms for large-scale datasets, and experiments of data vi-

sualization, image ranking, and relevance feedback.

� Chapter 7 concludes the thesis with a revision of contributions and discussions

about the thesis perspectives.
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Chapitre 2

Background

A revision of machine learning background is necessary before getting into the

details of the thesis. Section 2.1 presents an overview about statistical learning

theory, asymptotic behaviors of supervised learning with respect to the limit of

training data, and the choice of function. This section also introduces regularization

framework, which will be investigated in subsequent sections. Section 2.2 introduces

Support Vector Machine (SVM), the basic building block of our method. Section 2.3

discusses recent advances in kernel methods and how kernelization helps SVMs tackle

nonlinear data. Section 2.4 introduces semi-supervised learning where unlabeled

data is used in order to improve classi�cation results. The discussion amounts to

transductive learning and necessary assumptions on which these learning algorithms

are based. The �nal Section 2.5 reviews literature about dimensionality reduction

and manifold learning techniques.
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2.1 Overview on Statistical Learning

There have been two conventional paradigms in machine learning [Bishop 2006,

von Luxburg 2008]. The �rst one is unsupervised learning whose goal is to �nd latent

patterns in the data. Let {x1, . . . ,xm} ⊂ X be a �nite sample of size m drawn from

an unknown distribution P . Then unsupervised learning seeks to estimate P that

generates X . Unsupervised learning consists of various problems such as clustering,

density estimation, outlier detection, and dimensionality reduction.

The second paradigm is supervised learning. The principle is to associate an input

x with an output y in which y ∈ Y. The association should be done analogously

to the way a �nite sample of known inputs {x1, . . . ,xm} are associated with known

outputs {y1, . . . , ym}. Let us denote {(xi, yi)} as the training data, the algorithm

that uses this data to learn generalized rule(s) is called learning with supervision, or

simply supervised learning. If Y is continuous, for example Y ⊆ [0, 1], then we have

a regression problem whose goal is to explain the relationship between inputs and

outputs by a regressor. If Y is categorical, for example Y = {−1,+1}, then we have

a classi�cation problem whose goal is to predict categorical target y for every input

x.

For supervised learning, the labeled data {(xi, yi)} are drawn from a joint dis-

tribution, which is again written as P for short. For an arbitrary test point x whose

label is unknown, one needs to estimate the posterior probability P (y|x) and to

choose the target y∗ that gives the highest P (y∗|x), i.e.,

y∗ ← arg max
y
P (y|x) (2.1)

There are more than one way to solve (2.1). According to [Bishop 2006], supervised

learning methods are classi�ed into two families depending on the methodology of

estimating the conditional probability P (y|x). In particular, generative algorithms

compute the posterior probability P (y|x) via Bayes theorem

P (y|x) ∝ P (x|y)P (y). (2.2)

Once P (x|y) is known, P (y|x) can be computed. The terminology �generative� comes

from the fact that knowing P (x|y) allows us to generate the probability at any value

of x.

Unfortunately, estimating P (x|y) based on a �nite sample of training data is

di�cult, not to mention that is it impossible if the quantity of training data is

too small. Another family of supervised learning is discriminative ; it does not use

Bayes theorem but directly estimates P (y|x). Since P (y|x) expresses the certainty

of assigning label y to the test point x, then there may exist a function f of x that

approximates P (y|x) well. We call f a decision rule, or a classi�er, for the data

generated by P . Training data {(xi, yi)} is used to learn this function f .

Formally, given m training pairs {(xi, yi)}mi=1, the learned classi�er f maps a

feature vector x from the feature space X into a target value y in the target space
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Y, i.e.,
f : X −→ Y

x 7→ y
. (2.3)

The optimal classi�er, given the underlying distribution P , is the Bayes classi�er

de�ned as

fBayes(x) =

{
+1 if P (y = 1|x) ≥ 0.5

−1 otherwise
(2.4)

The Bayes classi�er fBayes �res 1 if the probability of assigning y = 1 given x is

equal or greater then 0.5 ; otherwise fBayes �res −1. The Bayes classi�er does not

exist in practice because we do not know P .

As our knowledge about P provided by the training data {(xi, yi)} is far from
su�cient to recover P , we have to pick a function f from some function space F
which maps X to Y (for example, F can be all possible functions from X to Y,
i.e., F = {f : X → Y}) such that f approximates best fBayes. In other word, the

function f must be selected such that it makes as least as possible incorrect decisions

compared with fBayes. In order to measure how good a classi�er f is, the following

0-1 loss function (see Fig. 2.4) tells us how precise f classi�es inputs {xi} as labels
{yi}, i.e.,

`(f(x), y) =

{
1 if f(x) 6= y

0 otherwise
(2.5)

Equipped with the loss function, the (true) risk of a classi�er f is de�ned as the

expected loss of f at all points xi ∈ X , where xi's are drawn independently from

the same distribution P , i.e., R(f) = E [` (f(x), y)]. Therefore our goal is to choose

f such that R(f) is as small as possible. If we knew the true risk R(f), then the

following classi�er fF would be the best approximation to fBayes with respect to the

function space F :

fF ← arg min
f∈F

R(f). (2.6)

Since we do not know the true risk R(f), empirical risk Remp(f) is used to estimate

classi�cation quality of an arbitrary function f with respect to the �nite training

sample {(xi, yi)} :

Remp(f) =
1

m

m∑
i=1

` (f (xi) , yi) . (2.7)

Let us assume that some machine learning algorithm produces a classi�er fm ;

intuitively, fm should obtain minimal empirical risk (2.7), which means

fm ← arg min
f∈F

Remp(f). (2.8)

We call (2.8) the empirical risk minimization (ERM) principle [Vapnik 1998b,

von Luxburg 2008]. Despite of the fact that fm is learned from a limited amount

of training data, one expects that fm explains well not only the training data but

also test data, which is not guaranteed by (2.8). However, if it is the case, then the
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classi�er fm is called to generalize well. We now examine under which conditions the

generalization of a classi�er fm is guaranteed, and going further how fm approaches

the best classi�er fF .

Since Remp(fm) is a biased estimation of R(fm), then there is no guarantee that

fm will make few errors on unseen data despite that fm may perform very well on

the training data. Instead, a good generalization performance of fm is obtained if

the di�erence |Remp(fm)−R(fm)| is small. Notice that this does not mention that

the empirical risk Remp(fm) must be small. In the worst case, fm is over�tted to the

training data, which means Remp(fm) is very small but the di�erence is large.

As opposed to the notion of generalization which is a property of an individual

classi�er, consistency property concerns about the convergence of a function class,

for example F , as in�nitely many training points are introduced. As fF is the best

classi�er in F , the consistency is how close a learned classi�er fm is with respect

to the optimal solution fF . However, given a �nite sample of training data, it is

di�cult for the ERM principle (2.8) to learn fm with good generalization. In the

one hand, there exists functions that perfectly predict on the training data but

miserably fail to predict on test data. For example, it is a function that returns

exact output values for training points and returns random guesses for test points ;

such a function clearly obtains zero empirical risk but fails to generalize beyond

training data. In the other hand, there may exist very good functions that predict

correctly on all possible test data without being based on training data. As a result,

the consistency is when f converges to fF for all f ∈ F , even with the worst choice

of f . Studies in [Cortes 1995, Vapnik 1998b] �gure out that the learning algorithm

achieves the consistency if the following uniform convergence condition is satis�ed

P

(
sup
f∈F
|R(f)−Remp(f)| > ε

)
→ 0 as m→∞ . (2.9)

The uniform convergence is a necessary and su�cient condition for the consistency

of ERM principle with respect to F . This condition states that the probability for

the supremum of estimation error, with respect to F , to be larger than ε (where ε

can be any value) will vanish when the number of training points goes to in�nity.

Equivalently, the consistency is attained if the empirical risk converges with high

probability to the true risk as the amount of training data reaches in�nity. Uniform

convergence condition gives us a theoretical guarantee for the consistency of fm.

The condition, however, does not give any recipe for practitioners.

The uniform convergence condition (2.9) addresses an important problem in

which the capacity of the function space must be restricted such that (2.9) is feasible

to be achieved (which is explained in the moment). Recall that the goal is to learn

a classi�er fm which is consistent with not only fF but also fBayes (we call this

Bayes-consistency) ; this goal means that the true risk R(fm) must converge to

the Bayes risk R(fBayes) [von Luxburg 2008]. However, this depends entirely on the

capacity of the function space F . If we are lucky enough then fBayes already belongs

to the chosen function space F but generally we assume that initially fBayes is not
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Figure 2.1 � Illustration of approximation error and estimation error in the task of

learning a classi�er fm from training data. Estimation error must be minimized so

that fm approaches the best function fF . The smaller the function space F is, the

easier the estimation but more di�cult the approximation error to be minimized ; as

a result, fm has less chances to be Bayes-consistency. If F is too large, there will be

more chances for fm to be Bayes-consistency but it is more di�cult for estimation

error to be minimized.

included in F . Then by incrementally increasing the capacity of F in some way,

we may include fBayes into F so that ERM principle �nally learns fm with good

generalization. Here it seems that expanding the function space F leads ERM to

accomplish the goal.

Suppose that we select F as the universe space of all functions, i.e., {f : X → Y},
in the following we will see that if we optimize over a too large function space F , it
will lead to inconsistency. Taking into account the true risk R(fF ), we rewrite the

gap R(fm)−R(fBayes) as

R(fm)−R(fBayes) = (R(fm)−R(fF ))︸ ︷︷ ︸
estimation error

+ (R(fF )−R(fBayes))︸ ︷︷ ︸
approximation error

. (2.10)

In the above expression, the estimation error is due to the randomness of the

training data ; it measures how well the learned classi�er fm performs in relation to

the best fF . The approximation error measures the loss incurred by setting F to

be small. There is a dilemma on the capacity of F : setting F large leads to the

decrease of the approximation error but at the cost of large estimation error ; setting

F to be very small leads to the decrease of the estimation error and the increase of

the approximation error because F may not contain certain functions being able to

explain the data. This dilemma is depicted in Fig. 2.1.

In trying to learn the best classi�er fm that obtains the Bayes-consistency prop-

erty, both the approximation and estimation errors must vanish when m reaches
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complexity of the function space

approximation error

estimation error
risk

Figure 2.2 � The tradeo� between estimation error and approximation error in

terms of the capacity of the function space F . If prior knowledge about f are known,

we can choose a function space F∗ that minimizes the total risk.

in�nity. It is not about to increase or decrease of the capacity of F , it is about

choosing the right F . The following generation bound [Vapnik 1998b] explains the

idea that an appropriate choice of F results into a consistent fm. For any function

f ∈ F , with a probability at least (1− δ), the following inequality holds

R(f) ≤ Remp(f) +

√
4

m
(log (2N (F ,m))− log(δ)), (2.11)

where N (F ,m) is referred to as the shattering coe�cient of function space F with

respect to sample size m. It is interpreted as the maximal number of ways to give

a dataset {x1, . . . ,xm} their labels {y1, . . . , ym} in which y ∈ {−1,+1}. In other

words, N (F ,m) equals to the maximal number of ways that F can partition a

dataset of size m into two partitions. Of course N (F ,m) is bounded by 2m.

The bound (2.11) states that if both Remp(f) and the square root term are small

simultaneously, then R(f) will be small as well. We can again explain the mechanism

of ERM principle, but using the notion of shattering coe�cient. If the capacity of

F is large so that it is able to explain the data, the shattering coe�cient is likely to

be high and the square root term will grow as a result. This leads R(f) to be more

di�erent from Remp(f), which implies inconsistency. If the capacity of F is small

enough but contains function(s) which explain well the data, then the square root

term is small so that R(f) ≈ Remp(f) and fm is more likely to be consistent. Finally,

the complexity of the learning task entirely depends on whether F is suitably chosen,

which is partly determined by our prior knowledge about the task. The structural

risk minimization (SRM) [Vapnik 1998b] reveals more about the principle on how

to choose an appropriate capacity level of F by forming a nested structure of F .
Starting from Finit with considerably small capacity, F is steadily expanded until
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the optimal trade-o� between the complexity of the solution (the capacity of F) and
the quality of �tting to training data (small empirical risk) is found.

In practice, SRM is rarely used for model selection and regularization ap-

proaches [Scholkopf 2001b] propose more e�cient ways to learn classi�ers with good

generalization. The heart of this approach is the regularizer term C(f) in the fol-

lowing objective function

fm ← arg min
f∈F
{Remp(f) + C(f)} . (2.12)

which is similar to ERM in the sense that the empirical risk Remp(f) is minimized.

However, the additional regularizer C(·) is responsible for fm to generalize well to

test data ; it enforces fm to behave accordingly to some prior(s) induced inside C(f).

For instance, C(f) can penalize any high �uctuation of f in explaining the data ; that

means f must not be too complex to �t to training data, otherwise f is over�tted.

Other priors include the inter-dependency between data points [Bakir 2007], max-

margin separation [Cortes 1995], sparsity [Olshausen 1997, Subrahmanya 2010],

manifold [Belkin 2006], etc. The basic di�erence between SRM and the regular-

ization approach is that the former regulates the complexity of function space F
while the latter regulates the complexity of an individual function f .

2.2 Support Vector Machines

In Section 2.1 we brie�y introduced the statistical learning theory with some ba-

sic concepts such as uniform convergence and generalization bounds. These knowl-

edges are necessary to understand under which circumstances learning is feasible.

From now on, we review particular methods which are building blocks of our contri-

butions. In this section we introduce support vector machines (SVMs) � a successful

and popular supervised learning algorithm � under the light of statistical learning

theory and regularization framework.

Prior to introduce SVM, it is essential to review early linear classi�cation mod-

els � the background on which SVM is built. A typical example of linear classi-

�cation model is perceptron [Rosenblatt 1958], which is the basis for other meth-

ods such as logistic regression, support vector machine, and conditional random

�elds [Bishop 2006]. The binary classi�er perceptron has its input a feature vector

φ(x) of signal x transformed by a nonlinear mapping function φ(·) ; its generalized
model is of the form

y(x) = g (f (φ(x))) (2.13)

in which f(·) is a linear function f(φ(x)) = w′φ(x) + b, which is a line in 2D

space, a plane in 3D space, and hyperplane if the dimensionality more than three.

Rosenbatt's model aims to use the hyperplane w′φ(x) + b = 0 in order to separate

the data into two halves with respect to their labels. The notation w′ denotes the

transpose of vector w. The intercept b is often incorporated into w by increasing by

one the dimensionality of w and putting 1 at the end of vector x, i.e., f(φ(x)) =
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[w′ b] · [φ(x)′ 1]′. The nonlinear activation function g(·) converts continuous values
given by f(·) into discrete values

g(u) =

{
+1, u ≥ 0

−1, u < 0
. (2.14)

The activation function g(·) is very similar to Bayes classi�er (2.4) in which u is

related to an estimation of conditional probability P (y = +1|x). A common design

for the empirical risk of perceptron is to count the total number of misclassi�ed

points, i.e., L = −
∑

i∈M yig(f(xi)) in which M denotes the set of misclassi�ed

points. The loss returns 1 i� g(f(xi)) and yi have opposite signs. Since such a non-

di�erentiable quantity is di�cult to optimize (g(u) is discontinuous at u = 0), (2.14)

is relaxed by omitting the thresholding function g(·) ; thus we get the new empirical

risk

L(w) = −
∑
i∈M

yi 〈w, φ(xi)〉 . (2.15)

According to [Bishop 2006], stochastic gradient descent is used to �nd the update

rule for the weight vector w with respect to every random choice of xi

w(t+1) = w(t) + ηyiφ(xi) (2.16)

in which η is the learning rate. At every update cycle, the weight w is increased

or decreased by a quantity of ηyiφ(xi), which depends on the sign of yi. The idea

of the update rule is to adjust the hyperplane fw = 0 such that the misclassi�ed

point is correctly classi�ed after every iteration. The optimization converges to a

solution (a perfect separation of the training data) after a �nite number of steps if

such a solution exists with respect to training data [Rosenblatt 1958, Marvin 1969,

Hertz 1991]. In practice, it is di�cult to know whether the algorithm cannot converge

(because of the inseparability of the data) or converges slowly. Furthermore, there

are more than one solution for separable data and the �nal solution depends on the

initialization of parameters.

A breakthrough was made when support vector machine (SVM) [Cortes 1995]

was proposed. Di�erent from perceptron, SVM provides a convex quadratic form

which guarantees global solution. Similarly to perceptrons, SVM seeks for a hy-

perplane that separates positive and negative training points ; but di�erent from

perceptrons, that separation must be maximal. Given that the data is separable,

the separation ρ is de�ned as the largest value such that

yi 〈w, φ(xi)〉+ b ≥ ρ,∀i = 1, . . . ,m (2.17)

where 2ρ ≥ 0 is called the margin of the classi�er fw. According to the illustration

in Fig. 2.3, this margin is twice the distance from the hyperplane fw = 0 to its

nearest training point(s) ; w and b must be sought in order for ρ to be optimal. As

explained in Appendix D, it is equivalent to the following quadratic optimization

problem

w∗ ← arg min
w

1
2 ‖w‖

2
2 s.t yi (〈w, φ(xi)〉+ b) ≥ 1, i = 1, . . . ,m (2.18)
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margin

slackness

Figure 2.3 � Based on the margin concept, SVM �nds a separating hyperplane

such that the margin (the green solid line), which is twice the distance from the

hyperplane to the nearest training point(s), is maximized. Maximal margin gives

us a sense that the classi�cation is done with the least uncertainty. Sometimes, it

is unavoidable to let some training points violate the margin condition, that is the

distance from them to the hyperplane are less than the margin. The margins of

those points becomes 1− ξi where ξi is the slack variable of xi.

where 〈·, ·〉 denotes dot-product of two vectors in some high (possibly in�nite) di-

mensional feature space, ‖·‖2 is the L2 norm of a vector. Notice that the margin ρ

is vanished in (2.18) because w and b is rescaled such that ρ always equals 1.

In some cases, it is impossible for fw to perfectly partition the training data.

This may be due to dimensionality imposed by mapping φ(·) when it is not high

enough for {φ(xi)} to be separable. Even if those mappings are separable, it is not

recommended in doing so because fw may be over-�tted. If fw has to make some

miss-classi�cations, then some of inequalities in (2.17) are not satis�ed. Since we

do not know which data points should be misclassi�ed, it is better to replace hard

constraints in (2.18) by a soft hinge loss (·)+ = max[0, ·] and let the optimization

algorithm decides by itself. The soft-margin SVM is de�ned as follows

min
w

1

2
‖w‖22 +

C

m

m∑
i=1

(1− yi 〈w, φ(xi)〉)+ . (2.19)

With the presence of the hinge loss, training points can violate the margin but

with trade-o�. The regularization coe�cient C controls this trade-o� between com-

plexity of the decision rule and proportion of inseparable points [Cortes 1995,

Cherkassky 2002]. If C is very large, the training error is highly penalized so that

less inseparable points are made on the training data. This may cause fw to be

over�tted to the training data. If C is very small, more inseparable points are al-

lowed so that the decision function fw may not explain well the distribution of the
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10

1
0-1 loss

Hinge loss

Figure 2.4 � Two loss functions used in classi�cation problems : shown in red is the

0− 1 loss which equals 1 i� f(x) = y and 0 if f(x) 6= y ; shown in green is the hinge

loss (1 − yf(x))+ = max[0, 1 − yf(x)] which is tightly associated with the margin

concept of SVMs.

training data, which is called under-�tting. Appropriate choices of C are owed to

model selection methods, which are out of this scope.

The introduction of soft-margin SVM raise an optimization issue because hinge

loss (1 − u)+ is non-di�erentiable at u = 1. An alternative is to replace hinge loss

with slack variables ξi's, i.e.,

min
w

1
2 ‖w‖

2
2 + C

m

∑m
i=1 ξi

s.t yi (〈w, φ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

, (2.20)

because treating with bound constraints ξi ≥ 0 is easier. Solving (2.18) can be

done in either primal form or dual form. While there are few works [Chapelle 2007]

that solve SVM in the primal form, machine learning community rather prefer the

dual form. This form can be solved by �rst applying Lagrange multipliers to in-

equalities of SVM and then using Karush-Kunn-Tucker conditions [Bertsekas 1999,

Fletcher 1987, Scholkopf 2001b]. Solving SVM in dual form also gives us a chance

to understand the meaning of support vectors (see Appendix D).

Since SVM is a non-parametric model, then choosing the primal or dual form

largely depends on the problem's scale. For small and medium scale problems, the

dual form SVM can be solved e�ciently using kernel tricks (see section below). For

larger scale problems, the dual form exposes its disadvantage because computational

cost of kernel methods grows rapidly with respect to the size of training data.

2.3 Feature Mapping

In this section we will discuss the feature map φ(·) that appears in (2.18). The

idea of φ(·) is to convert nonlinear relations between data points into linear ones. In

the following discussions, we highlight solutions for this problem.
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2.3.1 Implicit Feature Map

In this approach, the feature space H is not explicitly de�ned. So one neither

needs to de�ne an analytic form of the mapping φ(·) nor compute φ(xi)'s. Instead,

there is a family of special functions called kernels that compute the dot-product

〈φ(xi), φ(xj)〉 between two feature maps without explicitly computing individual

maps. Formally, a kernel is a function κ that takes inputs x, z ∈ X and outputs

κ(x, z) = 〈φ(x), φ(z)〉 in which φ is a mapping from X to a feature space H, i.e.,

φ : X → H
x 7→ φ(x)

. (2.21)

Before studying properties of kernels and how they guarantee an implicit feature

map, it is interesting to see an example. The purpose of this example is to show

how e�cient a polynomial kernel can replace more expensive dot-products. The toy

data is shown in Fig. 2.5(a) where �white� points are encircled by �red� points. SVM

clearly cannot separate this data by using a linear map φ(x) = x. Thus we attempt

to lift the data into H ≡ R3 space using the following polynomial map

φ : (x1, x2) 7→ (x2
1, x

2
2,
√

2x1x2). (2.22)

Via the mapping φ, the new representation is separable as shown in Fig. 2.5(b).

Furthermore, the dot-product in this new space can be computed by the following

polynomial kernel

〈φ(x), φ(z)〉 = x2
1z

2
1 + x2

2z
2
2 + 2x1z1x2z2 = (x1z1 + x2z2)2 = 〈x, z〉2 . (2.23)

In other word, by squaring the dot-product of x and z in the input space X , we obtain
the equivalent result when taking the dot-product between the φ(z) and φ(z). The

rightmost term can be rewritten as the value of a kernel function κ(x, z) = (x′z + b)d

in which b = 0 and d = 2 in the case above.

From the example above, we see that if the SVM formula can be expressed

in terms of dot-products, then implicit feature map can be applied ; this can save

much of computational cost because dot-products in high dimensional space is much

expensive than using kernels.

2.3.1.1 Kernelized SVM

This section explains how to exploit implicit kernel map in solving SVMs. Since

the goal of SVM is to �nd the optimal weight vector w, which is the normal vector of

the hyperplane 〈w, φ(x)〉+b = 0 separating the data {(φ(xi), yi)}, w must belong to

the feature space H and it admits a functional representation w =
∑m

i=1 αiyiφ(xi)

(the Representer theorem [Scholkopf 2001b, Shawe-Taylor 2004] or Appendix E).

Since the feature map φ is associated to a kernel function κ(·, ·) (see Appendix E),

then L2 norm of w in (2.18) therefore becomes

‖w‖22 = 〈w,w〉 =
m∑
i=1

m∑
j=1

αiαjyiyj 〈κ(·,xi), κ(·,xj)〉 =
m∑
i=1

m∑
j=1

αiαjyiyjκ(xi,xj),

(2.24)
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(a) Input data (b) Mapped data in feature space

Figure 2.5 � The example of how a mapping can covert nonlinear relations of the

data in the input space to the linear relations in the feature space.In this example,

the mapping (x1, x2) 7→ (x2
1, x

2
2,
√

2x1x2) lifts the data from R2 to R3. It is clear

that a plane can separate the red points from black points.

in which the transformations from the left hand side terms to the rightmost hand

side term is due to the reproducing kernel property (E.9). The kernelized SVM is

rede�ned as

arg min
α,b,ξ

1
2

∑m
i=1

∑m
j=1 αiαjyiyjκ(xi,xj) + C

m

∑m
i=1 ξi

s.t yi

(∑m
j=1 αjyjκ(xi,xj) + b

)
≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

αi ≥ 0 i = 1, . . . ,m

. (2.25)

where kernel values κ(xi,xj)'s are computed based on the choice of kernel function

κ(·, ·). There are numerous kernel functions to use, for example polynomial ker-

nel κ(x,y) = (x′y + c)d, Gaussian RBF kernels κ(x,y) = exp
(
−‖x− y‖2 /σ2

)
.

While we know the dimensionality of the feature space induced by dth degree

polynomial kernels, the dimensions of Gaussian RBF kernel is known to be in�-

nite [Scholkopf 2001b, Cristianini 2010, Shawe-Taylor 2004]. Nevertheless, it does

not matter since the complexity of (2.25) does not depend on data dimensionality

but size of training data.

2.3.1.2 Kernel Learning

In order to choose an appropriate kernel for a given training data, one must

choose among o�-the-shelf kernels the one that performs best. This can only be

done by testing every kernel and tuning its parameters accordingly. Model selection

techniques such as cross validation and grid search [Chang 2011] can be used for that

purpose. Since parameter space rapidly grows as the number of parameters increases,

model selection is e�cient only if the number of parameters does not exceed two.
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Let us take an example with RBF kernel, a generic smooth kernel. Using RBF kernel

with SVM requires tunning for two parameters C and kernel bandwidth σ. In order

to select the best model for SVM with RBF kernel, we have to search for the optimal

pair (C∗, σ∗) using grid search [Chapelle 2002]. For every attempt, the training data

is partitioned into K folds : K − 1 folds are used for training and the rest for test.

The optimal pair (C∗, σ∗) is the one that achieves the highest classi�cation accuracy.

A generic kernel like RBF, however, is not suitable for every problem. For in-

stance, studies of [Lazebnik 2006a, Maji 2013] have revealed that additive kernels

such as histogram intersection and χ2 kernels outperform RBF kernel in vision prob-

lems that use histogram data. Therefore, it may be better if kernels can be learned

from the data, which means that they are more suitable for particular cases of data.

Multiple Kernel Learning (MKL) [Rakotomamonjy 2008, Bach 2004, Bach 2008b,

Subrahmanya 2010, Picard 2010] is one of early e�orts to learn a weighted linear

combination of basic kernels, i.e.,

κ(x1,x2) =
P∑
p=1

γ2
pκp(x1,x2) =

P∑
p=1

〈γpφp(x1), γpφp(x2)〉 = 〈ψ(x1), ψ(x2)〉 , (2.26)

in which we denote the compositional mapping ψ(·) = (γpφp(·)′)′p=1,...,P . Since the

dimensionality of ψ(·) equals the sum of the basic mapping φp(·)'s, then the normal

vector w of the separating hyperplane is the concatenation of the basic wp's too,

i.e., w =
(
γpw

′
p

)′
p=1,...,P

. Substituting these new expressions of ψ(·) and w into the

primal form SVM (2.18), we obtain the standard formula of MKL-SVM

min
wp,b,β≥0

1
2

∑P
p=1 βp ‖wp‖2 + C

∑m
i=1 ξi + θ(β)

s.t yi

(∑P
p=1 βp 〈wp, φp(xi)〉+ b

)
≥ 1− ξi, i = 1, . . . ,m

βp ≥ 0, p = 1, . . . , P

, (2.27)

where βp = γ2
p and κp(·, ·)'s are basic kernels, for example RBF with various band-

width choices, histogram intersection kernel, χ2 kernel, polynomial kernel. The reg-

ularizer term θ(β) prevents the combination weight vector β from growing to in-

�nity. Two popular choices of θ(β) are L1 norm ‖β‖1 =
∑

p |βp| and L2 norm

‖β‖2 =
∑

p β
2
p . While the former promotes sparse solutions of kernel combination

(a.k.a kernel selection), the latter uses all P kernels. Lately, [Gehler 2008] proposes

in�nite kernel learning, [Cortes 2009b] proposes polynomial combination of basic

kernels, [Bach 2008a] learns a hierarchical kernel, etc.

2.3.2 Explicit Feature Map

As mentioned above, the feature map φ(·) is rarely computed. However, Nys-

trom's approximation [Williams 2000] can explicitly construct a data-dependent ap-

proximation φ̂(x) ∈ Rd for an implicit feature map φ(x) ∈ H in which d is consider-

ably small compared with the training size. Let us assume that this approximation

is a span of ` eigenfunctions ψi(·)'s associated with ` eigenvalues λi's and a kernel
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κ(·, ·) such that κ(x, z) =
∑N

i=1 λiψi(x)ψi(z) where N may be in�nite. The Nystrom

approximation states that the image in the explicit space {ψ1, . . . , ψ`} of a vector

φ(z) is φ̂(z) = [ψ1(z) . . . ψ`(z)]′ in which entries are approximated with respect to

a �nite sample {x1, . . . ,x`}, i.e.,

ψi(z) =

√
`

λi

∑̀
k=1

κ(z,xk)Uki, (2.28)

so that

φ̂(x) =
√
`Σ−1U′ [κ(z,x1) . . . κ(z,x`)]

′ . (2.29)

In the formula above, U is the matrix of eigenvectors resulting from the singu-

lar value decomposition (SVD) K = UΣU′ of kernel matrix K ∈ R`×` and

Σ = diag(λ1, . . . , λ`). Since ` is small, the computation of the kernel matrix

K ∈ R`×` is cheap and so does its SVD decomposition. With a good sampling

{x1, . . . ,x`}, Nystrom approximation is a simple way to compute explicit feature

maps. Notice that the approximation is not unique because the mapping depends

on data sampling.

Explicit feature map was not noticed in the past because kernel methods can

tackle inexpensively medium scale problems. Nowadays one needs to train nonlinear

SVMs on tens of millions training points, then solving kernelized SVMs is imprac-

tical. In particular, training kernelized SVMs (2.25) has O
(
m3
)
time and O

(
m2
)

space complexities. It is thus computationally infeasible to train kernelized SVMs

on very large data sets. The solution is to approximate nonlinear SVM by linear

SVM with suitable feature map. There have been interesting works exploring low-

cost explicit mapping methods. For instance, [Maji 2013] approximates intersection

kernel κ(x,y) =
∑m

i=1 min[xi, yi], [Vedaldi 2012] uni�es analyses of a large family of

additive kernels such as intersection kernel, χ2 kernel and Hellinger's kernel.

2.4 Semi-supervised and Transductive Learning

The uniform convergence condition (2.9) states that the generalization of a clas-

si�er f depends on function class F as well as the training sample size m. If m is

small, then the learned classi�er f may not generalize well, i.e., perform poorly on

test data. This situation may happen when labeled data is expensive or scarce to

obtain ; for example the labeling task requires skilled annotators or the labeled data

is obtained via physical experiments. In contrast unlabeled data is always abundant

and inexpensive. Let us denote {x1, . . . ,x`,x`+1, . . . ,xm} a �nite sample of both

labeled and unlabeled samples in which the �rst ` points are labeled, then our ques-

tion is how to learn a classi�er with good generalization, especially when ` is much

smaller than m.

Semi-supervised learning is a class of machine learning techniques that uses

unlabeled data to improve learning outcome. A semi-supervised algorithm can be

inductive or transductive. If it is inductive, then the learning goal is to infer from
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(a) A �nite sample of a two arcs manifold (b) A k-nearest neighbor (or ε-ball) graph

Figure 2.6 � Without knowing the data distribution P of the joint space X × Y,
we can still grasp prior knowledge of the marginal distribution P (x) =

∫
Y P (x, y)dy

with su�ciently large amount of unlabeled data. The marginal P (x) gives us in-

formation about the geometrical structure of the unknown distribution P , which is

supposed to lie on a manifoldM. Graph-based learning methods usually construct

an adjacency graph from the data. If the amount of data points is su�ciently high,

the graph is quali�ed as an approximation of the unknownM.

data a general decision rule which is usable for any unseen data drawn from the

same distribution, the one that generates the training data. SVM is such a typical

example of inductive learning. If it is transductive, then the learning goal is to give

correct labels, and not to to derive a decision function, for the unlabeled data. Firstly

introduced in [Vapnik 1977], transductive learning seeks to transfer label information

from labeled to unlabeled data without learning any explicit decision function. As a

consequence, in transductive setting the unlabeled data {x`+1, . . . ,xm} is also the

test data and prediction is not made in the whole space X but only those (m − `)
test points. The philosophy of transductive learning is based on Vapnik's conjecture

(see [Chapelle 2006b], chapter 24) : �When trying to solve some problem (labeling

test data), one should not solve a more di�cult problem as an intermediate step

(learning a decision function).�

Being either inductive or transductive, learning methods with semi-supervision

need to uncover patterns hidden in unlabeled data and exploit them. In Section 2.1

we assumed that training pairs {(xi, yi)}`i=1 are drawn from the joint probability

distribution P in X × Y space. It also means that unlabeled data {xi}i are drawn
from the marginal distribution P (x) =

∫
y∈Y P (x, y)dy. With su�cient amount

of unlabeled data, we have prior knowledge about P (x). The following assump-

tions [Chapelle 2006b] provides necessary conditions for semi-supervised learning to

relate the posterior probability P (y|x) and the marginal P (x) (see Fig. 2.6).

� Cluster assumption : If x and z are in the same cluster, which means they are
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drawn from the same density region characterized by the marginal probability

distribution P (x), then they are likely to be from the same class, i.e., P (y|x) ≈
P (y|z). If x and z are separated by a low-density region (for example, x and

z belong to di�erent clusters), then they are less likely to be from the same

class.

� Smoothness assumption : Considering P (x) in a low-dimensional manifold and

x, z drawn from P (x), the smoothness assumption states that if x and z are

close, then P (y|x) and P (y|z) should be close too. It is easy to see that the

cluster assumption is a special case of the smoothness one.

In the following sections, we will examine two typical methods based on SVM

formulation, which are based on these assumptions.

2.4.1 Transductive SVM

As two classes are unlikely to be from the same cluster, the decision bound-

ary should lie in a low-density area in between high-density regions. This is the

core idea of Transductive SVM(TSVM) [Vapnik 1977], an extension of SVM for

semi-supervised learning. Di�erent from SVM, TSVM can access to unlabeled data

which contains prior knowledge about the relationship between the feature space

X and the labeling space Y. Given ` labeled pairs {(xi, yi)}`i=1 and (m − `) unla-

beled samples {x`+1, . . . ,xm}, TSVM can try at maximum 2m functions (belonging

to the family of hyperplanes in Euclidean space) that may separate data into two

classes. The learning result is the decision boundary 〈w, φ(x)〉 + b = 0 that maxi-

mizes the margin with respect to the data labeled by the optimal labeling choice.

The cluster assumption considers that the optimal hyperplane should lie in a low

density region because such a placement is more likely to obtain a large margin and

few misclassi�cations. If it is the case, then TSVM admits the following objective

function
min

w,b,ŷ`+1,...,ŷm

1
2 ‖w‖

2

s.t yi (〈w, φ(xi)〉+ b) ≥ 1 i = 1, . . . , `

ŷi (〈w, φ(xi)〉+ b) ≥ 1 i = `+ 1, . . . ,m

ŷi ∈ {−1,+1} i = 1, . . . ,m

. (2.30)

The presence of predicted labels ŷi's of test points implies that (2.30) is related to an

iterative process. While optimal solvers are just capable of processing less than 100

examples, SVM Light [Joachims 1999], another TSVM implementation, produces

approximated solutions for hundred thousands examples in reasonable time.

2.4.2 Laplacian SVM

Laplacian SVM [Belkin 2006] is an extension of SVM for semi-supervised learn-

ing that uses the smoothness assumption. Let us assume that the supporting struc-

ture is a manifold 1 M, then a smooth variation along M is equivalent to keeping

1. According to [Lee 2007], a manifold M is a topological space that is locally Euclidean,

meaning that around every point of M is a neighborhood that is topologically the same as the
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small gradient changes
∫
x∈M ‖∇Mf‖

2 dP (x) with respect to probability density P ;

here ∇Mf is the gradient of a function f with respect to M. This idea is illus-

trated in Fig. 2.7. It is shown in [Lafon 2004, Belkin 2004, Belkin 2006] that this

continuous integral can be approximated by a discrete sum which is the operation

of graph Laplacian on an appropriate adjacency matrix built from a �nite training

data sampled fromM,∫
x∈M

‖∇Mf‖2 dP (x) =

∫
x∈M

fLPM(f)dP (x) = 〈f,LP 〉M , f ′Lf (2.31)

in which LPM(·) is the weighted Laplace-Beltrami operator [Belkin 2004] associated

to X and 〈·, ·〉M the dot-product de�ned onM. On the rightmost side is the labeling

vector f = [f(φ(x1)), . . . , f(φ(xm))]′ and the graph Laplacian L is the approximation

of LPM(f) on graph G = {V, E} (see Fig. 2.6) whose vertex set V = {vi}mi=1 are the

input data and the edge set E = {eij |j ∈ N (vi)∧ i ∈ N (vj)} consists of connections
between close data points. The notation N (v) denotes the neighborhood system of

vertex v. In order to compute L, one �rst needs to compute the weighted adjacency

matrix A whose element Aij equals to the similarity score of the edge eij ; then

L = diag(A1m)−A [Chung 1997] in which 1m is the column vector with all 1's. A

more intuitive form that explains (2.31) can be written as follows

f ′Lf =
1

2

m∑
i=1

m∑
j=1

(f(φ(xi))− f(φ(xj)))
2 Aij =

1

2

m∑
i,j=1

(〈w, φ(xi)〉 − 〈w, φ(xj)〉)2 Aij

(2.32)

The larger the weight Aij is, the more similar the labeling results f(φ(xi)) and

f(φ(xj)) are, and the closer the mappings φ(xi) and φ(xj) are. Through this reg-

ularizer, label information is di�used from labeled data to the unlabeled data. The

formal construction of Laplacian SVM add the manifold regularization term into

the primal form of SVM

min
w

1
2 ‖w‖

2 + γ
2

∑m
i,j=`+1 (〈w, φ(xi)〉 − 〈w, φ(xj)〉)2 Aij

s.t yi (〈w, φ(xi)〉+ b) ≥ 1, i = 1, . . . , `
. (2.33)

The coe�cient γ controls the degree of smoothness of the labeling. For further

optimization procedure and empirical results see [Belkin 2004, Belkin 2006].

2.5 Subspace Methods

In this last section, we discuss subspace methods aiming to explain the data by

revealing latent structures of the unknown distribution of data assumed earlier in

previous sections of this chapter.

Subspace methods study mapping techniques that transform data from a high

to a low-dimensional space while retaining their key characteristics. Their main

open unit ball in RD. For example, the Earth is spherical but looks �at at the human scale.
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Figure 2.7 � This �gure illustrates the fact that if a manifoldM is smooth, then

its magnitude of gradient ‖∇Mf‖ is small at any point inM.

hypothesis is that an underlying but unknown distribution P generates the observed

data and this could be related to some physical process or geometrical structure. Due

to our interpretation of data, such a structure should be low-dimensional. Subspace

methods, henceforth, correspond to the inverse process that eliminates irrelevant

dimensions and produces a more meaningful and compact representation of the

data.

This section gives a brief revision about the concepts and techniques of subspace

methods. Linear techniques are presented in Section 2.5.1 and nonlinear ones are

presented in Section 2.5.2 as well as 2.5.3.

2.5.1 Linear Techniques

Principal component analysis (PCA) [Jolli�e 1986] is perhaps one of the oldest

and most well known methods. The goal of PCA is to �nd a transformation that

decorrelates dimensions of the data X ∈ RD×m and present them into a new sub-

space S ⊆ Rd such that d � D. Assume that d bases of the new representation

are columns of the matrix B ∈ RD×d, then any x ∈ RD is linearly approximated in

terms of B as follows

x ≈ Bα, (2.34)

where α ∈ S is the new representation of x. Since the Euclidean subspace S is a

span of column vectors {bi}, then these vectors are orthonormal, which means dot-

products b′ibj = δij where δij = 1 if i = j and 0 otherwise ; additionally, column

vectors bi's satisfy ‖bi‖2 = 1. Since the construction of B must take into account

information loss minimization of the approximation (2.34), the optimal B∗ is the

solution of the following optimization problem of PCA :

B∗ ← arg min
B

m∑
i=1

‖xi −Bαi‖22 s.t B′B = I. (2.35)
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By substituting α = B−1x = B′x into (2.35), the new formula of PCA becomes

min
B

m∑
i=1

∥∥xi −BB′xi
∥∥2

2
s.t B′B = I. (2.36)

After expanding the ‖ · ‖2 norm and eliminating irrelevant terms, we obtain m

eigenvalue problems

max
‖Bi‖=1,Bi⊥Bj

(
B′i(X

′X)Bi

B′iBi

)
, i, j = 1, . . . ,m, (2.37)

whose objective function is the Rayleigh quotient [Horn 1990a]. Based on the

Courant-Fisher theorem, for instance [Shawe-Taylor 2004], the optimal B∗ is the

matrix whose columns are d eigenvectors corresponding to d largest eigenvalues of

the covariance matrix X′X. As covariance matrix is a generalization of the vari-

ance concept from two to multiple dimensions, then the eigenvectors of the top d

eigenvalues of X′X determine the top d directions where the data are scattered

most. In order to reduce the dimensionality of data X while keeping information

loss negligible, those d eigenvectors are chosen as the bases of the subspace S.

2.5.2 Sparse Coding and Dictionary Learning

In the construction of PCA, a data point x is approximated by d eigenvectors of

d largest eigenvalues of covariance matrix X′X. Such a covariance matrix is unable

to account for data nonlinearity, then PCA fails to learn subspaces for nonlinear

data.

Sparse coding [Olshausen 1997] is a family of encoding algorithms that harnesses

data nonlinearity via sparsity, i.e., letting the number of basis signi�cantly larger

than the dimension of the input data (d� D) and enforcing a parsimonious repre-

sentation to the data. The advantage of sparsity lies in the over-completeness of the

basis, which means that the basis set is diverse enough to characterize an individual

data point by few vectors of the basis B. A general formulation of sparse coding is

very similar to (2.35), i.e.,

arg min
B,αi

m∑
i=1

‖xi −Bαi‖22 + λψ(αi), (2.38)

except the regularizer ψ(·) which controls the sparsity of the composition (2.34). If

λ = 0, sparse coding returns to PCA ; the larger λ is, the sparser the α is. Popular

choices for ψ(·) are L0 and L1 norms. The former counts the number of non-zero

entries ; optimizing with this discrete quantity is di�cult. The latter ‖α‖1 =
∑

i |αi|
is easier to be solved and numerically proved of having a similar e�ect as of the

L0 norm. There are various ways to solve (2.38), however, the general idea is to

alternate between B and α in an optimization algorithm. Shown in Fig. 2.8(b) is

an illustration of a learned dictionary from image data shown in Fig. 2.8(b).
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(a) Some training images (b) Over-complete basis

Figure 2.8 � Using sparse coding to learn an overcomplete basis from images. Based

on m image patches extracted from the set of images (a), a basis B is learned by

(2.38). As shown in (b), the basis B consists of visual primitives with di�erent colors

(single and gradient colors), textures (less and more ridges), and their combinations.

Sparse coding is a powerful representation for image-related tasks such as denois-

ing, inpainting, and data compression. Fig. 2.8 shows a basis learned from natural im-

ages. Sparse representation is also used in feature extraction [Zheng 2011, Bar 2010]

and classi�cation [Ramírez 2010, Mairal 2008, Gao 2010].

2.5.3 Manifold Learning

Manifold learning is a family of subspace techniques based on manifold assump-

tion which states that high-dimensional data is supported by (low-dimensional)

manifolds. The goal of manifold learning is to re-embed 2 a manifold (from a high

dimensional space) to a lower dimensional space such that topology structure 3 of

the data is preserved.

In certain situations, it is quite clear that the data are supported on a low-

dimensional manifold. This is especially true for the data generated by some physical

process, i.e., see examples in Fig. 2.9. By studying a �nite sample ofM, which is the

observed data, we expect to capture the intrinsic structures ofM. In the following,

we will show that manifold learning methods achieve this goal in various ways.

2.5.3.1 Distance Preservation

This approach assumes that by an isometric mapping into the embedding space,

global structure of the underlying manifoldM is preserved. Such a method is called

isometric, which is a mathematical concept used to denote distance-preserving map-

pings.

2. An embedding is a representation of a topological object (a manifold, a graph) in a certain

space such that its topological properties are preserved [Lee 2007].
3. Topological structure of an object are attributes which are unchanged against deformation,

twisting, and stretching. In terms of topological structure of point cloud, it denotes the intrinsic

connectivity between points [Lee 2007].
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(a) A face manifold. (b) A texture manifold.

Figure 2.9 � Manifold naturally emerges from semantic content of the data. In (a)

is the manifold of faces taken with �xed distance but from various angles. In (b) is

the manifold of texture patches which di�er in terms of coarseness and orientation.

Multi-Dimensional Scaling. MDS is one of early manifold learning methods

which are based on the Euclidean distance. Given a �nite sample {x1, . . . ,xm} ⊂
X in which X is the embedded space, MDS �nds a low-dimensional embedding

{y1, . . . ,ym} such that pairwise distances computed between xi's are preserved in

yi's respectively. The input of MDS is the square distance matrix S de�ned as

S =


s11 s12 . . . s1n

s21 s22 . . . s2n
...

...
. . .

...

sn1 sn2 . . . snn

 , (2.39)

where sij = ‖xi − xj‖2. It turns out that the exact coordinates {xi} are not nec-

essarily known and only the dissimilarity matrix S is necessary for MDS to work.

MDS learns a low-dimensional embedding {yi} such that the pairwise distances

in the embedding space must approximate those of the embedded space. MDS's

objective function, therefore, is to minimize the following problem

min
{yi}

∑m
i,j=1 (‖yi − yj‖ − sij)2

, (2.40)

whose global solution is obtained by applying singular value decomposition, which

is quite similar to that of PCA.

Isomap. Since the data is assumed to be nonlinear, then the underlying manifold

M has non-zero curvature. Euclidean distance, however, cannot account for curva-

ture. Isomap [Tenenbaum 2000] avoids the disadvantage of Euclidean distance by

using geodesic distance as an alternative. Geodesic distance used in geography mea-

sures the shortest walking distance between two geographical locations on Earth. In

mathematics, the notion of geodesic distance is used to indicate the shortest path

between two points on a manifold. Based on the data {xi} sampled fromM, if one

can �nd a good approximation of the geodesic measure with respect toM, then the

topological structure ofM is preserved.
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(a) Swiss roll (b) Swiss roll with hole

Figure 2.10 � Top row : the input data ; Bottom row : the learned embeddings of

Isomap. According to (b), Isomap is not suitable for nonconvex data as it wrongly

estimates true distances between points surrounding the hole (compare the holes in

the input data and in the resulting embedding).

Isomap approximatesM by constructing an adjacency graph {V, E} whose ver-
tex set V comprises the data {xi} while the edge set E comprises connections between

vertices with similar appearances. Edge weights represent distances between data

points in the embedded space. Based on the de�ned graph, geodesic distances be-

tween vertex pairs are computed using shortest path algorithms such as Kruskal.

Storing these distances dissimilarity matrix S, Isomap uses the algorithm of MDS

in order to compute the embedding.

2.5.3.2 Topology Preservation

Recall that MDS and Isomap are based on isometry property in which the learned

embedding preserves exact pairwise distances of the data. This condition is rather

strict. Although Isomap accounts for the curvature of M, geodesic distance could

not be approximated well if the given data is not uniformly sampled orM contains

holes (see Fig. 2.10). Nevertheless, an alternative is to approximate M using an

adjacency graph and via preserving the connectivity of the graph, the topology of

M is preserved.

Locally linear embedding. LLE [Roweis 2000] seeks to preserve local isometry.

It means that isometry property at local areas of manifold M must be preserved

in the embedding space. In term of graph connectivity, the distances of the edges

connecting the vertex of interest and its neighborhoods must be preserved. This is

a mild condition compared with the �global� isometry of MDS or Isomap.
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Given an arbitrary vertex vi and its k adjacent vertices {vj |eij > 0}, LLE �nds

the best reconstruction x̂i of xi based on a weighted linear combination of the neigh-

borhoods xj , i.e., x̂i ≈
∑

j δ(eij)wijxj , in which δ(eij) = 1 if eij > 0 and δ(eij) = 0

otherwise. The following objective function is minimized with the optimizer W∗ :

W∗ ← arg min
W

1

2

m∑
i=1

∥∥∥∥∥∥xi −
m∑
j=1

δ(eij)wijxj

∥∥∥∥∥∥
2

(2.41)

in which wij 's are entries of W at row i and column j. Assume that the local isometry

holds, then W is reusable for reconstructions yi ≈
∑

j wijyj of the embedding {yi}.
This embedding is found as the optimizer of the following quadratic program

{y∗i } ← arg min
{yi}

1

2

m∑
i=1

∥∥∥∥∥∥yi −
m∑
j=1

δ(eij)wijyj

∥∥∥∥∥∥
2

. (2.42)

Laplacian Eigenmaps. LE [Belkin 2001] aims to preserve graph connectivity,

which is associations between vertices and their neighborhoods. In other word, LE

brings the neighborhood system of the graph from the embedded into the embedding

space. Technically, LE's objective function penalizes any non-smooth variation of the

embedding's coordinates between adjacent vertices. The neighborhood relation is

determined as pairwise similarity wij = exp
(
−‖xi − xj‖2 /σ2

)
between data points

xi and xj . Since wij decreases exponentially according to the dissimilarity between

xi and xj , then wij is positive within a small range with respect to bandwidth σ.

If wij is large, then yi and yj must be close to each other ; we do it by forcing the

pairwise distances ‖yi − yj‖2 to be minimized, i.e.,

min
Y

1
2trace (YLY′)

s.t YDY′ = I
, (2.43)

in which Y ∈ Rd×m is the low-dimensional embedding and trace (YLY′) =∑
ij wij ‖yi − yj‖2 ; the equality constraint YDY′ = I ⇔ Diiy

′
iyi = Iii,∀i, where

the diagonal matrix D has its diagonal entries Dii =
∑

j Wij . This constraint pre-

vents the embedding to have any arbitrary scaling. In the simplest case where d = 1,

let us denote z ∈ Rm being the �rst row of Y, then (2.43) becomes

min
z

1
2z′Lz

s.t z′Dz = 1
. (2.44)

The problem (2.44) is equivalent to the minimization of the generalized Rayleigh

quotient [Horn 1990a] :

min
z

z′Lz

z′Dz
. (2.45)

The solution of (2.45) is the eigenvector of the second smallest eigenvalue of the

generalized eigen problem Lz = λDz. If d > 1, then the 2nd dimension of the
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embedding will get the eigenvector of the (2 + 1)rd smallest eigenvalue, and so on

and so forth. If the Laplacian matrix L is normalized L = I−D−1/2WD−1/2 then

(2.45) becomes similar to the canonical Rayleigh quotient (similar to the case of

PCA). Notice that L is always positive semide�nite because for all z, then

z′Lz =
∑
ij

Wij(zi − zj)2 ≥ 0., (2.46)

The only di�erence in solving PCA and LE is that the use of the linear covariance

matrix X′X versus the graph Laplacian L.

2.6 Summary

In this chapter we have introduced necessary theoretical background for contri-

butions to be presented later. This chapter consists of two parts ; the classi�cation

task is presented from Sections 2.1 to 2.4 and the data representation task is pre-

sented from Section 2.5 to the end. The former discusses classi�cation techniques

which map data into feature spaces such that the data are best categorized ; the

latter discusses unsupervised embedding techniques which learn low-dimensional

feature space and preserve topology of data.
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Transductive Kernel Learning

In the context of classi�cation, we tackle kernel learning problem from transduc-

tion perspective. Kernel-based methods are conventionally known to be e�cient to

classify data in a high (possibly in�nite) feature space in which the mapping function

associated with the kernel is not necessarily known, which leads to reduced compu-

tational e�ort. This method, however, encounters limitations in tunning parameters

of prede�ned kernel functions in order to �t to the data ; furthermore, the com-

putational cost of the kernel matrices becomes expensive for large-scale databases.

We instead propose to learn an explicit kernel map with bounded dimensionality.

The �nite dimensionality of a kernel map may provide better generalization. Addi-

tionally, by adopting the transductive approach (see Section 2.4), our method can

exploit unlabeled data when labeled data are scarce. We investigate our method in

three vision problems : object recognition, image interpretation, and image annota-

tion. The formulation in this chapter is built on background knowledge presented

in Chapter 2. The formulation is followed by an e�cient optimization algorithm

which helps us to solve the interactive object segmentation problem. Benchmarked

on the VOC Pascal 2011 dataset, quantitative results demonstrate that our method

is at least comparable with state of the art.

This work was published in the following paper :

1. Phong Vo, Hichem Sahbi, Transductive Inference & Kernel Design

for Ojbect Class Segmentation, IEEE ICIP, USA 2012.



40 Chapitre 3. Transductive Kernel Learning

3.1 Introduction

According to Section 2.1, existing machine inference techniques may be cate-

gorized into inductive and transductive. The former consists in �nding a decision

function from a labeled training set, and uses that function in order to generalize

across unlabeled data. Among popular inductive techniques support vector machines

(SVMs) [Vapnik 1998a, Schölkopf 2001a] are well studied and proved to be perfor-

mant in many real-world applications including object recognition, text analysis,

and bioinformatics [Maji 2008, Joachims 2002a, Asa 2008]. The success of SVMs

is highly dependent on the choice of kernels ; existing ones include the linear, the

gaussian and the histogram intersection.

Usual kernels may not be appropriate in order to capture the actual and the

�semantic� similarity between data for some speci�c tasks, so appropriate kernels

require considerable work on model selection and parameters tuning. For instance

[Ong 2005, Cristianini 2001, Chapelle 2002] adapt the parameters of existing ker-

nels (such as the order of the polynomial kernel or the scale of the gaussian) using

quality assessment functions and generalization bounds. Other approaches, con-

sider kernel design as a feature selection problem [Grandvalet 2002] or distance

learning [Chatpatanasiri 2010, Jain 2009, Kulis 2010]. Alternatives including hy-

perkernels [Ong 2005] and multiple kernel learning (MKL) [Bach 2004, Wu 2006,

Rakotomamonjy 2008, Bach 2008b, Sonnenburg 2006] directly learn kernel (gram)

matrices from training data. MKLs are particularly successful and their principle

consists in �nding linear combinations of standard kernels using the L1, L2 or mixed

norms [Cortes 2009a, Rakotomamonjy 2011, A�alo 2011]. Going beyond linear com-

binations of kernels, [Varma 2009] extends traditional MKL to other combinations

and even though the underlying optimization problem is no longer convex, the per-

formance is better. Similarly, polynomial combination of basic kernels is also pro-

posed in [Cortes 2009c]. Further discussions can be found in Section 2.3.

Even-though performant, the success of these inductive kernel based methods

also depends on cardinality of the labeled data. For some applications labeled data is

rare and expensive ; only a very small fraction of training data is labeled and the un-

labeled data may not follow the same distribution as the labeled one, so learning ker-

nels using inductive inference techniques is clearly not appropriate (see a toy exam-

ple in Fig. 3.1). Alternative approaches [Lanckriet 2004b, Belkin 2006, Zhou 2003a]

may include the unlabeled data as a part of the learning process and this is known

as transductive inference [Vapnik 1977, Vapnik 1998a, Chapelle 2006a] (see Sec-

tion 2.4). This concept was pioneered by Vapnik (see for instance [Vapnik 1977]). It

relates to semi-supervised learning and relies on the i) smoothness assumption which

states that close data in a high-density area of the input space, should have similar

labels [Zhou 2003a, Belkin 2006] and ii) the cluster assumption which �nds decision

rules in low density areas of the input space [Narayanan 2006, Chapelle 2005]. In

that context, transductive versions of SVMs were also introduced [Joachims 1999] ;

they build decision functions by optimizing the parameters of a learning model to-

gether with the labels of the unlabeled data. This turned out to be very useful in



3.2. Problem Formulation 41

order to overcome the limited cardinality of the labeled data w.r.t the number of

training parameters.

While various kernel learning algorithms have been developed for inductive

setting, little work is achieved for transductive kernel learning. Existing related

work includes semide�nite programming (SDP) [Lanckriet 2004a], alignment based

kernels [Cristianini 2001] and manifold based kernel learning subject to constraints

on angles and distances [Weinberger 2004]. Regardless their e�ectiveness, some of

these techniques are expensive and hardly extensible to large scale training problems.

We introduce a novel transductive learning algorithm for kernel design and

classi�cation. Our method is based on a constrained matrix factorization which

produces a kernel map that takes data from the input space into a high dimensional

space in order to guarantee their linear separability while maximizing their margin.

This margin property, however, and as known [Vapnik 1998a], does not necessarily

guarantee good generalization performance on the unlabeled set, if the latter is

drawn from a di�erent probability distribution compared to the labeled data.

Therefore and beside maximizing the margin, our transductive approach includes a

regularization term that enforces smoothness in the resulting kernel map in order

to correctly di�use labels to the unlabeled data. Additionally, the rank of learned

kernel map is reduced in order to maintain good generalization. Following our

formulation, and in contrast to MKL, our learning model is not restricted to only

convex linear combinations of existing kernels ; indeed it is model-free. Furthermore,

it also takes advantage from both labeled and unlabeled data and this results into

better generalization performances as corroborated by our experiments.

The rest of this chapter is organized as follows. Section 3.2 presents our trans-

ductive learning and kernel design approach. Its optimization algorithm is presented

Section 3.3 ; experiments with the interactive object segmentation is explained in

Section 3.4. We conclude the chapter and discuss about future extensions in Sec-

tion 3.5.

3.2 Problem Formulation

De�ne X ⊆ Rn as an input space corresponding to all the possible image features

and let S = {x1, . . . ,x`, . . . ,xm} be a �nite subset of X with an arbitrary order.

This order is de�ned so only the �rst ` labels of S, denoted {y1, . . . , y`} (with

yi ∈ {−1,+1}), are known. In many real-world applications only a few data is

labeled (i.e., `� m) and its distribution may be di�erent from the unlabeled data.

We can view S as a matrix X in which the ith column corresponds to xi. Our

objective is to build both a decision criterion and an optimal kernel map in order

to infer the unknown labels {y`+1, . . . , ym}.
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Figure 3.1 � This �gure shows classi�cation results on the �two moon� example

in [Belkin 2006]. In (a) an inductive method is used for classi�cation ; In (b) a

transductive technique is used instead and it exploits the density of the unlabeled

data. In this example labeled data are marked with �diamond� and �circle� and

correspond to the positive and the negative classes respectively.

3.2.1 Max-margin Inference and Kernel Design

Inductive learning aims to build a decision function f that predicts a label y for

any given input data x ; this function is trained on S ′ = {x1, . . . ,x`} and used in

order to infer labels on S\S ′. In the max-margin classi�cation [Vapnik 1998a], we

consider φ as a mapping of the input data (in X ) into a high dimensional space

H. The dimension of H is usually su�ciently large (possibly in�nite) in order to

guarantee linear separability of data.

Assuming data linearly separable in H, the max-margin inductive learning �nds

a hyperplane f (with a normal w and shift b) that separates ` training samples

{(xi, yi)}`i=1 while maximizing their margin. The margin is de�ned as twice the

distance between the closest training samples with respect to f and the optimal

(ŵ, b̂) correspond to

argmin
w,b

1
2 ‖w‖

2
2

s.t yi (〈w, φ(xi)〉+ b) ≥ 1, i = 1, . . . , `,
(3.1)

which is the primal form of the hard margin support vector machine [Vapnik 1998a].

Given xi ∈ S\S ′, the class of xi in {−1,+1} is decided by the sign of f(xi) =

〈w, φ(xi)〉+ b. Following the kernel trick [Vapnik 1998a], one may show that f(xi)

can also be expressed as
∑`

j=1 αjyjκ(xi,xj) + b, here (α1 . . . α`)
′ is a vector of pos-

itive real-valued training parameters and κ(xi,xj) = 〈φ(xi), φ(xj)〉 is a symmetric,

continuous, positive (semi-de�nite) kernel function [Schölkopf 2001a]. The closed

form of κ(xi,xj) is de�ned among a collection of existing kernels including linear,

gaussian and histogram intersection ; but the underlying mapping φ(x) ∈ H is usu-

ally implicit, i.e., it does exist but it is not necessarily known and may be in�nite

dimensional.
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We propose in the remainder of this section a new approach that builds explicit

and �nite dimensional kernel maps. In contrast to usual kernels, such as the Gaussian

RBF, the VC-dimension [Vapnik 1998a] � related to a �nite dimensional kernel

map � is �nite 1. According to Vapnik's VC-theory [Vapnik 1977], the �niteness

of the VC-dimension avoids loose generalization bounds and may guarantee better

performance.

3.2.2 Enforcing Low Rank Kernels

Now, we turn the problem into �nding the hyperplane f as well as a Gram

(kernel) matrix K = Φ′Φ where each column Φi corresponds to an explicit mapping

of xi into a �nite dimensional space (i.e., φ(xi) = Φi). This mapping is designed in

order to i) guarantee linear separability of data in S, ii) to ensure good generalization
performance by maximizing the margin, iii) to approximate the input data, and also

iv) to ensure positive de�niteness of K by construction, i.e., without adding further

constraints. This results into the following constrained minimization problem

min
B,Φ,w

1
2 ‖X−BΦ‖2F + 1

2 ‖w‖
2
2 + µ

2‖Φ‖
2
F

s.t yiw
′Φi ≥ 1, i = 1, . . . , `

‖Bi‖22 = 1, ∀i = 1, . . . , p

(3.2)

here ‖A‖2F = tr(AA′) stands for the square of the Frobenius norm and X ≈ BΦ

is factorized using an overcomplete basis B ∈ Rn×p (i.e., p > n) and a new kernel

map Φ ∈ Rp×m. Without a loss of generality b is omitted in the above expression

as it can be induced from w and the mapping Φ.

As discussed earlier, and according to [Vapnik 1998a], the VC-dimension (related

to a family of classi�ers) depends also on the dimension of the learned kernel map

and this may a�ect generalization, especially if this dimension is very high. Since

the actual (intrinsic) dimension of the learned kernel map Φ is unknown, we choose

the number of basis p to be su�ciently large such that the �rst inequality constraint

in (3.2) can be satis�ed and the left-hand side term tends to zero for an in�nite

number of solutions.

First, p is overestimated to max (`, n) + 1, and this guarantees that the above

constrained minimization problem has a solution. Then, the actual (intrinsic) dimen-

sion is found by regularizing (3.2) by the Frobenius norm ‖Φ‖2F which has similar

e�ect as the nuclear norm where µ ≥ 0 controls the rank of K. Indeed, the squared

Frobenius norm is exactly the L2-norm on the eigenvalues of K and it is less likely

to shrink these eigenvalues into zeros compared to the L1-norm (which is the nuclear

norm). Nevertheless, as will be shown later, it provides a closed form kernel solution

and our experiments show that it indeed reduces the rank of the kernel map (see

Lemma 3.2.1 below) while allowing us to derive a simple optimization algorithm 2.

1. The VC-dimension is the maximum number of data samples, that can be shattered, whatever

their labels.
2. We tried to optimize (3.5) using nuclear norm ; details are presented in Appendix B.
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Lemma 3.2.1 For any matrix Φ ∈ Rp×m, the following inequality holds

‖Φ‖∗ ≤
√
r‖Φ‖F , (3.3)

where the Frobenius norm ‖Φ‖F =

√∑min{p,m}
i=1 σ2

i ; the nuclear norm ‖Φ‖∗ =∑min{m,p}
i=1 σi ; r = rank(Φ) = rank(Φ′Φ) and σi's are eigenvalues of the Gram

matrix K = Φ′Φ.

Proof. See for instance [Horn 1990b, Golub 1996].

3.2.3 Transduction Setting

For a better conditioning of (3.2), the smoothness assumption is introduced to

kernel maps. This makes it possible to design smooth kernel maps and to assign

similar predictions to neighboring data for a better generalization on the unlabeled

ones (see toy example in Fig. 3.2).

We model the input data S using an adjacency graph {V, E} where nodes V =

{v1, . . . , vm} correspond to samples {xi} and edges E = {eij} are the set of weighted
links of the graph. In the above de�nition, xi ∈ Rn is a feature vector (color,

texture, etc.) while eij = (vi, vj ,Aij) de�nes a connection between vi, vj weighted

by Aij . The latter is de�ned as Aij = 1{vj∈Nk(vi)} · s(xi,xj), here the neighborhood
Nk(vi) of a given node vi, includes the set of the k-nearest neighbors of vi. Notice

that the neighborhood system is designed in order to guarantee that ∀vi, vj ∈ V,
vj ∈ Nk(vi) implies vi ∈ Nk(vj) and vice-versa. The function s(·, ·) measures the

similarity between two given points xi and xj , and we set it in practice to either

the RBF or the histogram intersection functions.

Given that two vertices vi and vj are connected and that the weight Aij of the

edge eij is large, the smoothness constraint requires that vi and vj having similar

label, which mean f(xi) = w′Φi approximately equals f(xj) = w′Φj . The larger

the weight Aij is, the smoother the labeling between vi and vj is. At the scope of

the whole graph {V, E}, the following energy term must be minimized

β

4

m∑
i=1

m∑
j=1

(
w′Φi −w′Φj

)2
Aij =

β

2
w′ΦLΦ′w, (3.4)

where β ≥ 0 and L is the graph Laplacian de�ned by L = D − A with D =

diag(A1m) and 1m is column vector of length m with all its entries equal to one.

When adding this regularizer into the objective function (3.2) and replacing

its inequality constraints by the squared loss in order to group with the matrix

factorization term, we obtain the complete form of our transductive learning problem



3.2. Problem Formulation 45

(a) t = 0 (b) t = 3

(c) t = 10 (d) t = 50

(e) t = 200 (f) t = 1000

Figure 3.2 � This �gure shows the evolution of the learned kernel map through

di�erent iterations of our method (see Algorithm 1). This map is found for the

popular �two moon� example in [Belkin 2006]. The underlying 2D input data are

not linearly separable, while the learned kernel map makes them linearly separable

in a 3D space. In these experiments, only ` = 4 samples were labeled (shown in cyan

and yellow resp. for the positive and the negative classes).
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min
B,Φ,w

µ

2
‖Φ‖2F +

1

2
w′
(
Ip + βΦLΦ′

)
w︸ ︷︷ ︸

regularization

+
α

2

∥∥∥∥( X

Y

)
−
(

B 0n×p
01×p w′

)(
Φ

ΦC

)∥∥∥∥2

F︸ ︷︷ ︸
data term

,

s.t ‖Bi‖22 = 1, ∀i = 1, . . . , p
(3.5)

with Ip the p× p identity matrix, C is the diagonal m×m matrix for which the ith

diagonal element is �xed to 1 for a labeled sample, and 0 for an unlabeled one, and

similarly, Y ∈ R1×m has its ith element equal to yi for a labeled data, and 0 for an

unlabeled one.

3.3 Optimization

It is clear that the minimization problem (3.5) is not convex jointly with respect

to B,Φ,w. We consider an alternating optimization procedure by solving three sub-

problems : we �rst maximize the margin 2/ ‖w‖ with respect to w and we update

the basis B, then we minimize the regularization criterion, the rank and the recon-

struction error with respect to Φ. This process is repeated until convergence ; i.e.,

all the unknowns remain unchanged from one iteration to another. Di�erent steps

of the algorithm are shown in Algorithm (1) ; the superscript (t) is added to w, B

and Φ in order to show the evolution of their values through di�erent iterations of

the learning process.

Algorithm 1 Transductive kernel map learning

Input : labeled {(xi, yi)} `i=1 and unlabeled data {xi}mi=`+1

Initialization : compute adjacency matrix A, degree matrix D, graph Laplalcian L, t← 0,

set Φ(0) to a full-rank random matrix.

Repeat steps (1+2) until convergence OR t > tmax

1. Update w(t+1) and B(t+1) using (3.6), (3.7) respectively.

2. Update Φ(t+1) by taking the limit Ψ̃ of (3.10), with Ψ(0) = Φ(t).

Output : kernel maps {Φ(t+1)
i }mi=`+1 and labels {yi}mi=`+1 with yi =

(
w(t+1)

)′
Φ

(t+1)
i .

3.3.1 Learning Basis and Classi�er

Assuming �xed Φ(t) (denoted simply as Φ) and enforcing the gradient of (3.5)

to vanish (with respect to w) leads to

w(t+1) = α

(
Ip + Φ (αC + βL) Φ′

)−1

ΦCY′. (3.6)
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Similarly, we �nd B(t+1) as

argmin
B

1
2

∥∥X−BΦ
∥∥2

F

s.t ‖Bi‖22 = 1, ∀i = 1, . . . , p
(3.7)

and its dual function is

g(λ) = inf
B

(
1

2
‖X−BΦ‖2F +

p∑
i=1

λi
(
‖Bi‖22 − 1

))
(3.8)

where λ = [λ1 . . . λi . . . λp] are the Lagrange multipliers associated with p equality

constraints in (3.7). The minimizer of the primal problem (3.7) can be obtained by

�nding λ∗ that maximizes (3.8) using Newton method as reported in [Lee 2006]. The

analytic solution for basis update is therefore B(t+1) = XΦ′ (ΦΦ′ + diag(λ∗))
−1
.

When the data scale up or the dimensionality of X grows, solving the dual

problem using Newton method, which requires inverting a p × p matrix at each

Newton iteration, becomes impractical. Alternatives include using gradient descent

methods such as block coordinate descent [Mairal 2009] and projected gradient de-

scent [Mazumder 2009].

3.3.2 Learning Kernel Map

Considering �xed B(t+1) and w(t+1) (denoted simply as B, w in the remainder

of this section), and the previous kernel map solution Φ(t), our goal is to �nd Φ(t+1)

by solving (3.5). Conditions for the existence of this new kernel map solution Φ(t+1)

are given in the following proposition.

Proposition 3.3.1 3 Let ‖.‖1 denote the entrywise L1-norm. Provided that the

following inequality holds,

β < ‖ww′‖−1
1 .‖A‖−1

1 , (3.9)

the optimization problem (3.5) admits a unique solution Φ(t+1) = Ψ̃ as the limit of

Ψ(τ+1) = ψ
(
Ψ(τ)

)
, (3.10)

here ψ : Rp×m → Rp×m is de�ned as ψ(Ψ) =
(
ψ1(Ψ) . . . ψm(Ψ)

)
, with each column

vector ψi(Ψ) as

ψi(Ψ) =

(
µI + αB′B + (αCii + βDii) ww′

)−1

.

[
α (B′X + wYC) + βww′ΨA

]
i

,

(3.11)

[.]i stands for the i
th column of a matrix. Furthermore, and for a su�ciently large

µ, the kernel maps Ψ(τ) in (3.10) satisfy the convergence property :∥∥Ψ(τ) − Ψ̃
∥∥

1
≤ L

∥∥Ψ(0) − Ψ̃
∥∥

1
, (3.12)

with L = β‖ww′‖1.‖A‖1 and Ψ(0) = Φ(t−1).

3. A more intuitive bound of the smoothness coe�cient β, regarding its relations to classi�cation

margin ρ and data quantity m, is presented in Appendix C.
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Proof. Following (3.5), let us consider the function de�ned on the set of matrices

in Rp×m

E : Ψ 7→ µ

2
‖Ψ‖F+

1

2
w′
(

Ip+βΨLΨ′
)

w+
α

2

∥∥∥∥( X

Y

)
−
(

B 0n×p
01×p w′

)(
Ψ

ΨC

)∥∥∥∥2

F
(3.13)

The necessary condition of the �xed-point relation in (3.10) results from ∂E/

∂Ψ = 0 (details about derivative are omitted in this proof). We will now prove that

the function ψ is L-Lipschitzian, with L = β‖ww′‖1.‖A‖1.
Let us denote the left-hand side (inverse) matrix in (3.11) simply as Zi and

introduce g(Ψ) = (g1(Ψ) . . . gm(Ψ)) with gi(Ψ) = Z−1
i ψi(Ψ).

Given two matrices Ψ(1) and Ψ(2) in Rp×m, we have

m∑
i=1

∥∥∥∥Z−1
i ψi(Ψ

(1))− Z−1
i ψi(Ψ

(2))

∥∥∥∥
1

=

m∑
i=1

∥∥∥∥gi(Ψ(1))− gi(Ψ(2))

∥∥∥∥
1

=
∥∥g(Ψ(1))− g(Ψ(2))

∥∥
1

= β
∥∥ww′(Ψ(1) −Ψ(2))A

∥∥
1

≤ β
∥∥ww′

∥∥
1
.
∥∥A∥∥

1
.
∥∥Ψ(1) −Ψ(2)

∥∥
1

≤ L
∥∥Ψ(1) −Ψ(2)

∥∥
1
, with L = β

∥∥ww′
∥∥

1
.
∥∥A∥∥

1
.

(3.14)

By taking the free parameter µ (in Zi) su�ciently large

m∑
i=1

∥∥∥∥Z−1
i ψi(Ψ

(1))− Z−1
i ψi(Ψ

(2))

∥∥∥∥
1

=
m∑
i=1

∥∥∥∥[ψi(Ψ(1))− ψi(Ψ(2))
]
.Z−1
i

∥∥∥∥
1

≥
m∑
i=1

∥∥∥∥ψi(Ψ(1))− ψi(Ψ(2))

∥∥∥∥
1

=
∥∥ψ(Ψ(1))− ψ(Ψ(2))

∥∥
1

(3.15)

Combining (3.14) and (3.15), we get∥∥ψ(Ψ(1))− ψ(Ψ(2))
∥∥

1
≤ L

∥∥Ψ(1) −Ψ(2)
∥∥

1

. �
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The process described in (3.10) allows us to recursively di�use the kernel maps

from the labeled to the unlabeled data, through the neighborhood system de�ned in

the graph G. This process is iterative and may require many steps before convergence.

The latter is reached when ‖Ψ(τ) − Ψ(τ−1)‖ ≤ ε ; (in practice, ε = 10−2, and

convergence usually happens in less than τmax = 100 iterations, see Fig. 3.3).

iterations

Figure 3.3 � This �gure illustrates the convergence process on the particular exam-

ple of Fig. 3.1, i.e., the di�erence between current and previous estimate of kernel

maps through di�erent iterations. The ragged points are resulted from the incom-

patibility between the kernel map learned at iteration (t− 1) (based on w(t−1) and

B(t−1)) and the kernel map learned at iteration t (based on newly updated w and

B).

Optimization Complexity. Based on the optimization procedure introduced

above, we test the elapsed time required in order to obtain a baseline performance.

We use another toy data example in order to generate from few hundreds to tens

of thousands points ; training data are randomly picked at 5 percent of the sampled

points. More details about data generation is commented in Fig. 3.4. The experiment

is tested on a workstation with quadcore 2Ghz and the parameters of the algorithm

are tmax = 3, τmax = 50, α = β = 1, µ = 10−8, k = 4. Shown in Fig. 3.5 are the

complexity curve of time required for the algorithm to obtain classi�cation accura-

cies varying between 60 to 70 percent. With few hundred data points, it takes less

than a sencond to �nish the optimization ; several thousands of data points requires

from several seconds to a minute ; with half a million points, it takes approximately

1.5 hours for our algorithm to �nish iterations.

Convergence Speed. We show how the proposed classi�cation algorithm per-

forms on the ORL face dataset (see Fig. 3.6) which contains 10 di�erent face images

for every 40 distinct subjects. For every subject, two images are randomly selected

as training data. 40 binary problems are evaluated and their results are summarized

in Fig. 3.7. As the curves suggest, high classi�cation precision is obtained early, i.e
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just after few iterations ; subsequent iterations are mainly about reducing kernel

maps dimensionality.

1 2

1

2

Classification result

 

 

True pos

True neg

False pos

False neg

Labeled points

1 2

1

2

Groundtruth

Figure 3.4 � The toy data are sampled from a squared chessboard with equal

numbers of positive and negative classes ; 5 percent of sampled points are randomly

picked as training data. We generate the chessboard data with dimensions ranging

from 21 to 25 cells ; 50 points are sampled at each cell so that data quantity varies

from 200 to 51200. Shown above is an example of how the data looks like (right)

and the classi�cation result (left).
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Figure 3.5 � The time complexity of our algorithm to obtain baseline accuracy on

chessboard data when the number of data points increasing from few hundreds to

tens of thousands.
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Figure 3.6 � Some examples of the ORL face images.
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Figure 3.7 � The obtained precision and rank of learned kernels maps as they

evolve over iterations.

3.4 Experiments

We use the Pascal VOC 2011 dataset 4 in order to evaluate the performance

of our transductive inference method on object class segmentation (OCS) whose

processing pipeline is shown in Fig. 3.9. For that purpose, we sample from the VOC

database 556 images containing object instances of 21 classes (20 object classes

and the background class). For every image, object instances belonging to these

21 categories need to be recognized and segmented from background. Similarly to

recent works, we approach the segmentation problem at the superpixel-level rather

than pixel-level ; this approach not only reduces computational resources but also

improve segmentation quality.

In our experiments, images are subdivided using an irregular grid (neighborhood

system) of 700 superpixels, each one is processed in order to extract four visual

descriptor types [Tighe 2010] : position, texture, SIFT, and color. As a result, every

superpixel is characterized by its visual appearance and position information. While

the former supports connections between visually similar superpixels in the graph,

4. http ://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/index.html
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Table 3.1 � This table shows the list of features used to describe superpixels. All

feature vectors, excepting position, are normalized using L1-norm prior to their

concatenation. See [Tighe 2010, Malisiewicz 2008] for more details.

Type Description Dimension

Position Absolute Mask 8× 8 = 64

Top Height 1

Bottom Height 1

Texture Interior texton histogram 100

SIFT Interior SIFT histogram 100

Color RGB mean 3

RGB std. dev. 3

RGB Color Histograms 11× 3 = 33

the latter supports connections between local superpixels. For more details about

the construction of descriptors and their dimensions, see Table. 3.1.

For every image, we turn OCS into a transductive inference problem where only

a small fraction of its underlying superpixels is labeled (see Fig. 3.12, third column).

Di�erent from the example in Fig. 3.9, test images are not annotated by the human

user but simulated by computer. We randomly choose a subset of superpixels of a

test image as the labeled data. A transductive classi�er is trained for each category

and we combine these classi�ers using the �winner-take-all� strategy in order to infer

the category of a given unlabeled superpixel.

We use the standard protocol of Pascal VOC 2011 in order to evaluate segmen-

tation accuracy. It is de�ned as the average accuracy across 21 classes. For each of

class, the accuracy is computed as the ratio between the number of correctly labeled

pixels and the number of pixels in the union area of the segmented result and the

ground truth, i.e.,

accuracy =
true pos.

true pos. + false pos. + false neg.
. (3.16)

In the equation above, true pos. means the number of pixels correctly labeled as the

ground truth ; false pos. means the number of pixels incorrectly labeled ; false neg.

means the number of missing pixels. Since the di�culty of an OCS problem lies in

the ratio between the labeled and unlabeled data, we compare average accuracies at

di�erent percentages of annotation.

3.4.1 Settings and Performance

Di�erent settings were experimented for our method including the size of the

neighborhood (denoted k) when building the graph {V, E}. The choice of these

parameters will be discussed in the remainder of this section.
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Figure 3.8 � For every superpixel of a test image, four descriptors types � three

visual and one positional descriptors � are extracted. These descriptors are used in

order to construct the a�nity graph for our transductive setting.

Graph topology. The neighborhood size k of the graph is very dependent on the

topology of the data. An appropriate selection of k should avoid short-cuts (overes-

timated k) and missing-connections (underestimated k). Shown in Fig. 3.10(a) are

the accuracy curves of three values of k in which k = 3 and k = 6 give the best

mean accuracy at any annotation rate. We explain that the optimal neighborhood

size k = 6 approximately equals to the average number of neighboring superpixels

(see Fig. 3.9(b) with zooming). We �x this optimal choice k = 6 for subsequent

experiments.

Regularization & Rank reduction Shown in Fig. 3.10(b) are the average ac-

curacy curves as increasing functions of α (almost quasi-constant for larger values

of α). Given β = 0.1 �xed, these curves achieve their optimal mean accuracies when

α = 10 and this satis�es our convergence criterion in Proposition 3.3.1 (see example

in Fig. 3.3).

Fixing α = 0.1, we analyze the e�ect of the smoothness regularizer. Fig. 3.10(c)

reports average accuracy for di�erent values of the regularization parameter β ; note

that β = 0 corresponds to the baseline inductive setting (i.e., no regularization is

applied). As increasing β from 0.001 to 0.1, the mean accuracy is increased too and

it achieves the best performance when β = 0.1. However, the increase rate of the
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(a) Annotated image (b) Oversegmentation (c) Segmented foreground
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Figure 3.9 � The processing pipeline of interactive object segmentation. Initially

the user annotates some representative foreground & background regions in the

image (a) ; the annotated image is over-segmented into superpixels (b) ; based on

the data in which the labeled ones are the annotated superpixels and the unlabeled

ones are the unannotated superpixels, our transductive kernel learning infers the

complete foreground object as shown in (c). In (d) is the visualization of the learned

kernel map ; the kernel map is projected into 2D space using PCA in which round

blue points indicate background labeled data and square red points indicate labeled

foreground data. Unlabeled data (triangle points) are assigned color with respect to

their relative distances with respect to the positive and negative labeled data. Fig.

(e) shows the prediction map in which hotter or cooler colors correspond to more

con�dent predictions of the positive or negative class respectively. The convergence

rate of this inference process is shown in (f).

curve with 25% labeled data is less than the others. It means that the smoothness

regularizer takes a more important role if data is highly insu�cient. If the learned

kernel map is over-smoothed, i.e., β = 10, the mean accuracy is quickly degraded.

According to these results, an underestimated β results into noisy segmentation

while an overestimated β makes the segmentation results very smooth which leads

to lose object details since regularization applies to both foreground and background

classes ; since background tends to occupy more labeled data than foreground, the

smoothness favors the one with larger number of labeled data. Larger values of β

result in more superpixels to be labeled as background class. Examples in Fig. 3.12
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Figure 3.10 � The evolution of the average accuracy with respect to our algorithm's

parameters.

show such evolutions of the segmentation results.

Finally, Fig. 3.10(d) shows the evolution of accuracy with respect to the param-

eter µ. From these �gures, it is clear that larger values of µ favor low rank kernels

while maintaining high accuracy. If the rank is unbounded as µ→ 0, the kernel map

is ill-conditioned and the mean accuracy is dropped. With an appropriate value of

µ, rank of the kernel map steadily increases after every iteration of the optimiza-

tion algorithm and it converges to the upper-bound max(`, n) + 1 with respect to

the number of iterations t. However, the coe�cient µ determines how fast this con-

vergence is. Fig. 3.11 illustrates that fact that the smaller the coe�cient µ is, the

more rapidly the rank is raised. Rather than considering µ as the coe�cient of the

rank regularizer, it is also regarded as the regularization on the �uctuation of kernel

map ranks. For example. if µ is larger, then the rank regularizer restricts the rep-
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Figure 3.11 � Rank evolution of kernel map during an optimization process. Red

squares at every iteration t depict rank distribution of kernel maps over 556 segmen-

tation problems. In the �rst and second steps, i.e., t = 1 and t = 2, these distribu-

tions are scattered and then progressively shrink as t grows. If t is large enough, these

distributions reduce to few points which are upperbounded by max(`, n) + 1 (blue

solid line). Smaller µ requires fewer iterations for the optimization to converge).

resentation to be learned along the direction which is orthogonal to the separating

hyperplane (see Fig. 3.2). Therefore, it µ is set too large, then the learned kernel

map is less capable of discriminating the data. In our experiments, µ is kept at 10−8.

3.4.2 Comparison

Our method is compared with inductive as well as transductive approaches :

SVM [Cortes 1995], MKL-SVM [Rakotomamonjy 2008], TranSVM [Joachims 1999],

LapSVM [Belkin 2006]. For all these comparisons, we �x our parameters as α = 10,

β = 10−1, µ = 10−10, ε = 10−2, τmax = 20, and tmax = 5. In all these experiments,

our proposed method has an average run time of 1.008(s) per image on a quadcore

2Ghz PC while SimpleMKL requires 1.337(s), SVM 0.084(s), Transductive SVM

0.271(s), and Laplacian SVM 0.082(s).

Our method versus Inductive learning. In our experiments, inductive ap-

proaches include SVM classi�ers [Vapnik 1998a] with four di�erent kernels (linear,

RBF, χ2, and histogram intersection). The Gaussian RBF kernel is optimally tuned

with respect to its bandwidth parameter while other kernels are parameter-free. For

the implementation part of SVM, we use additive kernel SVMs [Maji 2008]. Addi-

tionally, we also compare our method with multiple kernel learning (MKL-SVM)

that learns the kernel by linearly combining prede�ned kernel functions. By associ-

ating 4 kernel functions mentioned above with 5 descriptors (Table 3.1), we train
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Figure 3.12 � The e�ect of the smoothness regularizer with respect to the coe�cient

β. 1st column : test images ; 2nd column : ground truths ; 3rd column : annotated

superpixels ; 4−8th columns : segmentation results with β = 10−3, 10−2, 10−1, 1, 10.

In all the four examples above, the smoothness regularizer favors classes having the

highest quantities of labeled data.
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Figure 3.13 � Comparison between our algorithm and state-of-the-arts of inductive

learning methods.

MKL via SimpleMKL 5 [Rakotomamonjy 2008] using a pool of 20 Gram matrices.

As shown in Fig. 3.13(a), 3.13(b), our method outperforms the inductive clas-

si�ers, with various kernels as well as their combination using MKL-SVM, and the

accuracy of the inductive techniques and our method become more and more similar

as the percentage of labeled data increases. Our �rst conclusion is that the proposed

method is very suitable to learn a classi�er especially when the fraction of labeled

5. http ://asi.insa-rouen.fr/enseignants/∼arakotom/code/mklindex.html
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Figure 3.14 � Comparison between our algorithm and related transductive meth-

ods.

data is very small and the second conclusion is that the learned kernel map is more

appropriate for classi�cation than linear combination of kernels.

Our method versus Related transductive methods. Transductive ap-

proaches, used for comparison, include Laplacian-SVM 6 and transductive SVM 7

and their implementations can be downloaded from their author's homepages. The

optimal parameters (C∗, γ∗) used by SVM are reused by TranSVM. The weights for

regularization terms of LapSVM γI = 0.79 and β = 0.01 produce good classi�cation

results. According to the result presented in Fig. 3.14, our method consistently out-

performs Transductive SVMs and Laplacian SVMs ; note that the latter also relies

on regularization with a setting similar to our, (i.e., the same graph Laplacian and

graph construction) but our method has an extra advantage of optimizing the kernel

map resulting into a more suitable data representation for classi�cation.

3.5 Summary

We introduced in this chapter, a new transductive learning approach for kernel

design and classi�cation. The strength of our contribution resides in the variational

framework that allows us to explicitly design an �optimal� kernel map as a part of

the learning process. When compared to baseline inductive methods, multiple ker-

nel learning and also related transductive methods, our approach shows competitive

performance on the challenging object class segmentation task. As shown in experi-

ments, a smooth segmentation result depends on the coe�cient β ; it must be set not

too big otherwise the result is over-smoothed. This is due to data imbalance which

frequently happens in practice. In subsequent chapters, we investigate extensively

6. http ://www.dii.unisi.it/∼melacci/lapsvmp/

7. http ://svmlight.joachims.org/
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how our formulation is tailored in order to exploit image context in problems of

image annotation and scene understanding.
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Figure 3.15 � 1st column : test image ; 2nd column : simulated annotations ; 3rd

column : ground truths ; 4th column : our method ; 5th column : MKL-SVM ; 6th

column : LapSVM. Our method outperforms MKL-SVM in segmenting articulated

objects (see 3rd, 4th, and 9th rows) and evenly outperforms LapSVM in segmenting

complex scenes which contain more than two object classes (see 1st, 2nd, 6th, 7th

rows). These examples demonstrates that our learned kernels are more appropriate

than conventional kernels in OCS problem.



Chapitre 4

Multi-class Kernel Learning for

Image Annotation

As mentioned in the thesis title, our concern is about the creation of machine

learning methods in solving problems of image interpretation and search. In the

previous chapter, our transductive kernel learning goes beyond the naive use of

existing kernels and their restricted combinations ; our method is able to learn in

a transductive setting a �model-free� kernel map capable of explaining the training

data and generalize well on unseen data. A �rst application to image interpretation

� interactive object class segmentation � was introduced in the previous chapter.

We present in this chapter another application of our learning method for image

search. In particular, we study the automatic image annotation problem, which is

the key part of any image search system that uses keywords in order to index images

by semantic concepts. Our contribution of this chapter is twofold : (i) we extend

the transductive kernel learning formula for multi-class classi�cation, and (ii) we

incorporate regularization by modeling dependency between labels. Experiments

conducted on image annotation show that our method achieves at least comparable

results with related state of the art methods using the MSRC and the Corel5k

databases.

Parts of this work were mentioned in the followings papers :

1. Phong Vo, Hichem Sahbi, Transductive Kernel Map Learning and

Its Applications to Image Annotation, BMVC, UK, 2012.



62 Chapitre 4. Multi-class Kernel Learning

4.1 Introduction

With the exponential growth of multimedia sharing spaces, such as social net-

works, visual contents are nowadays abundant. Searching these large collections

requires a preliminary step of image annotation that translates visual contents into

labels also known as keywords or concepts (see for instance [Duygulu 2002]). Auto-

matic image annotation is challenging due to the perplexity when assigning many

possible labels to images and the di�culty to analyze rich and highly semantic con-

tents. In annotation, image observations are �rst described using low-level features

(color, texture, shape, etc.), and labels are then assigned to images using variety of

inference techniques such as hidden Markov models [Ephraim 1989], latent Dirich-

let allocation [Blei 2003], probabilistic latent semantic analysis [Hofmann 1999], and

support vector machines (SVMs) [Cortes 1995]. These inference techniques are used

in order to model the correspondence between low level features and labels and allow

us to predict keywords for unlabeled images.

Among existing image annotation approaches, machine learning ones are partic-

ularly successful and may be categorized into generative and discriminative. Gener-

ative methods model a priori knowledge and dependencies between image observa-

tions and their possible labels using for instance graphical models [Lavrenko 2003,

Fan 2004, Mensink 2011, Ulges 2011]. In these models, the annotation process is

based on maximizing a posterior probability using a variety of network inference

techniques. This category of methods even though relatively successful su�ers from

complexity in modeling and inference especially when labels are taken from a large

scale vocabulary. Alternative approaches are discriminative and consider image an-

notation as a classi�cation problem [Carneiro 2007, Feng 2004, Russakovsky 2010a].

A vocabulary of labels is �rst de�ned, and a decision criterion is then learned for

each label and used in order to identify images belonging to that label.

The aforementioned categories of machine learning techniques are highly de-

pendent on the learned concepts and may fail when the latter are highly semantic

and di�cult to model. In order to overcome these issues, recent discriminative ap-

proaches consider a priori knowledge and relationships between data and the learned

concepts (context, shared features, etc.) [Ulges 2011, Xue 2011, Li 2010, Tsai 2011].

The success of these image annotation methods also depends on cardinality of the

labelled data and the choice of the appropriate setting for learning. The inductive

setting [Deng 2010, Deng 2011, Farhadi 2009, Russakovsky 2010a] consists in build-

ing a decision function for each concept using labelled images, and uses that function

in order to generalize across unlabelled images. In these methods, labelled data are

usually scarce and expensive ; only a very small fraction of training images is labelled

and the unlabelled images may not follow the same distribution as the labelled ones,

so learning using inductive techniques is clearly not appropriate.

Alternatives [Belkin 2006, Vapnik 1977] may include the unlabelled data as a

part of the learning process and this is known again as transductive inference. The

concept of transductive inference, or transduction, was pioneered by Vapnik (see

for instance [Vapnik 1977]). It relates to semi-supervised learning [Chapelle 2006a]
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and relies on the i) smoothness assumption which states that close data in a high-

density area of the input space, should have similar labels [Chapelle 2006a] and ii)

the cluster assumption which �nds decision rules in low density areas of the input

space [Chapelle 2006a]. Learning consists in building decision functions by optimiz-

ing the parameters of a learning model together with the labels of the unlabelled

data (see for instance [Belkin 2006, Joachims 2002a, Joachims 1999, Melacci 2011]).

When applied, these transductive methods turned out to be very useful in or-

der to overcome the limited cardinality of the labelled images in image annota-

tion [Fergus 2009, Ma 2011, Yuan 2011, Wang 2009, Chen 2011b].

Among popular learning techniques support vector machines [Cortes 1995] are

well studied and proved to be performant in image annotation [Grangier 2008] ; in

SVMs, kernels are used in order to model visual similarity between images, and

only images sharing the same concepts are expected to have high kernel values. The

success of SVMs is therefore, highly dependent on the choice of kernels and usual

ones, such the linear, the Gaussian RBF and the histogram intersection, may not

be appropriate in order to capture the actual and the semantic similarity between

images for some speci�c concepts.

Better inductive kernels are obtained by learning metric distance func-

tions [Chatpatanasiri 2010, Kulis 2010, Guillaumin 2009, Makadia 2008,

Feng 2013] ; other transductive kernels were designed using semide�nite

programming [Lanckriet 2004a]. In order to take extra advantage from

di�erent settings, (inductive) multiple kernels (MKL) were also intro-

duced [Bach 2004, Wu 2006, Rakotomamonjy 2008, Bach 2008b, Sonnenburg 2006]

and consider convex (and possibly sparse) linear combinations of elementary kernels

and proved to be more suitable [Varma 2009]. With the current state of the art,

MKL are considered as one of the most e�ective kernel design and combination

techniques. Nevertheless, MKL based design hits at least two major limitations ;

On the one hand, and as mentioned earlier, these methods are limited by the

cardinality of labelled data and they do not rely on any extra information in order

to overcome that limitation, on the other hand they are mainly restricted to linear

combinations of existing kernels only.

In the previous chapter we proposed the transductive kernel learning (TKL)

algorithm which is based on a constrained matrix factorization which produces a

kernel map that takes image data from the input space into a high dimensional

space in order to guarantee their linear separability while maximizing their margin.

In this respect, transductive kernel learning is not restricted to only convex lin-

ear combinations of existing kernels [Rakotomamonjy 2008, Vishwanathan 2010b] ;

indeed it is model-free. Beside maximizing the margin, its transductive approach

includes a regularization term that enforces smoothness and low rankness in the

resulting kernel map in order to di�use label information from training to test data.

Due to the availability of both the training and test data, the learning outcome ob-

tains better generalization performance. In this chapter we propose the multi-class

transductive kernel learning algorithm and apply it to the problem of image anno-

tation. Compared to the binary formula (3.5) where its use in multi-class problems
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requires running many binary classi�ers, the multi-class formula allows sharing one

kernel map to many classi�ers which signi�cantly reduces time and computational

resources.

Besides, a multi-class classi�cation model allows us to model thematic rela-

tionships between classes (for instance, see [Ulges 2011, Tsai 2011]). Such relation-

ships can be modeled as statistical dependencies between semantically related la-

bels [He 2009]. Based on the multi-class formula, we design a label-dependency

model which is built on semantic dependency of labels in an image ; it promotes

highly related labels to co-occur in which the relatedness is represented by label co-

occurrence frequencies computed based on training data. Simultaneously, both the

relatedness between labels and similarity between images are incorporated into our

new formula. As corroborated by our image annotation experiments, empirical re-

sults have shown that the novel algorithm performs well on the MSRC and Corel5K

datasets while being robust against imbalanced data.

The remainder of this chapter is organized as follows. We update our transduc-

tive learning approach and kernel design in Section 4.2 for multiple classes and the

implementation of our optimization procedure in Section 4.3. We illustrate in Sec-

tion 4.4.3 the application of our method to image annotation using two datasets ;

MSRC and Corel5K. We conclude the chapter in Section 4.5 while providing a pos-

sible extension for a future work.

4.2 Method

4.2.1 Mathematical Notations

De�ne X ⊆ Rn as an input space corresponding to all the possible image features

and let S = {x1, . . . ,x`, . . . ,xm} be a �nite subset of X with an arbitrary order.

This order is de�ned so only the �rst ` label vectors of S, denoted {y1, . . . ,y`} are
given ; here yi ∈ {−1,+1}K where K is the number of the labels used to annotate

` training points. In many real-world applications only a few data is labeled (i.e.,

`� m) and its distribution may be di�erent from the unlabeled data. For brevity,

the features of input data are represented as the matrix X ∈ Rn×m and their labels

are represented as the matrix Y ∈ RK×m where its �rst ` columns are labeled and

the next (m − `) columns are zero vectors ; Xi or [X]i denotes the column i of X

while Xij is the entry of X at row i and column j. Additionally, ‖·‖F is the Frobenius

norm, tr(·) is the trace operator, X′ is the transpose of X, and diag(v) is a diagonal

matrix whose diagonal is vector v.

4.2.2 Multi-class Kernel Learning

Conventional max-margin classi�cation models (for instance SVM [Cortes 1995])

aim to learn linear functions of the form y = 〈w, φ(x)〉 + b in which φ(·) maps

nonlinear data {xi} ∈ X into linear ones {Φi} ∈ H and w ∈ H is the normal

vector of the optimal hyperplane separating the training data {(xi,yi)}`i=1 via max-
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imizing the margin 2/‖w‖ ; here H is some Reproducing Kernel Hilbert Space (for

instance [Scholkopf 2001b]) equipped with a dot-product 〈·, ·〉. For kernel meth-

ods [Shawe-Taylor 2004, Scholkopf 2001b], φ(·) andH are not explicitly known ; thus

the dimensionality of H (and the VC-dimension [Vapnik 1998b]) may be in�nite,

which is bad for generalization performance. Transductive kernel learning (TKL)

learns �nite-dimensional kernel maps {Φi} ∈ H ⊂ Rp×m and a basis B ∈ Rn×p,
which are the elements of the factorization BΦ = X, altogether with a classi�er w

that guarantees max-margin property. By sharing Φ to K classi�ers, the multi-class

TKL formula can be written as follows

min
W,Φ,B

α
2 ‖BΦ−X‖2F + µ

2 ‖Φ‖
2
F + 1

2 ‖W‖
2
F

s.t W′ΦC = Y

‖Bj‖22 = 1, j = 1, . . . , p

, (4.1)

where the Frobenius norms of Φ and W control the dimensionality of the kernel map

and the complexity of classi�ers respectively ; setting µ small enough guarantees both

dimensionality �niteness of Φ and data �delity of ` equality constraints in (4.1) ; the

mask matrix C ∈ Rm×m is diagonal in which Cii = 1{1≤i≤l}. The next p equality

constraints force the basis to have unit magnitude in order to prevent Φ and B from

growing to in�nite. The upper bound of p must be at least max(n,m) + 1 so that

the training data can be shattered [Vapnik 1998b, Scholkopf 2001b].

A new formula is obtained by replacing these ` �rst equality constraints by a

squared loss term, i.e.,

min
W,Φ,B

µ
2‖Φ‖

2
F + 1

2 ‖W‖
2
F + α

2

∥∥∥∥( X

Y

)
−
(

B 0n×p
0K×p W′

)(
Φ

ΦC

)∥∥∥∥2

F
s.t ‖Bi‖22 = 1, ∀i = 1, . . . , p

,

(4.2)

in which 0K×p and 0n×p are zero matrices of sizes K × p and n× p respectively.

4.2.2.1 Smoothness Constraint

For a better conditioning of (4.2) a smoothness term is introduced into the

equation. This term makes it possible to design a smooth kernel map and to assign

similar predictions to neighboring data. Similar to the construction of transductive

kernel map in the previous chapter, we model the input data S using an adjacency

graph {V, E} where nodes V = {v1, . . . , vm} correspond to samples {xi} and edges

E = {eij} are the set of weighted links of that graph. Considering yi = W′Φi and

yj = W′Φj , we de�ne our regularizer as

β

4

m∑
i=1

m∑
j=1

‖W′Φi −W′Φj‖2Aij =
β

2
tr
(
W′ΦLΦ′W

)
(4.3)

here β ≥ 0 and L is the graph Laplacian de�ned by L = D−A and D = diag(A1m)

where 1m is the all-ones vector of length m.
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4.2.2.2 Modeling Label Dependency

Our idea is based on modeling the dependency between labels in an image : if

the label c is likely to occur in an image and it highly correlates with the label

c′ (according to some training data), then c′ is also likely to be present in that

image. Let us denote p(c|c′) as the probability of the occurrence of c given that of

c′, minimizing the following term encourages labels c and c′ to co-occur :

1

2

K∑
c=1

K∑
c′=1

∥∥W′
cΦ−W′

c′Φ
∥∥2

Pcc′ = tr
(
Φ′WQW′Φ

)
. (4.4)

In the above equation, Pcc′ = p(c|c′) and Q = diag(P1K)−P and 1K is the all-one

vector of size K. Given a training database, the conditional probability p(c|c′) is

computed as the ratio between the number of images annotated with both labels c,

c′ and the number of images annotated with c′ :

p(c|c′) =

∑`
i=1 1{Yci}1{Yc′i}∑`

i=1

∑K
c′′=1 1{Yc′′i}1{Yc′i}

(4.5)

in which the training label 1{Yci} = 1 if Yci = 1 and 1{Yci} = 0 if Yci 6= 1. Since

we do not consider the case where c = c′, then p(c|c) is unde�ned, thus Pcc = 0.

In practice, we found that better performance is obtained if P is symmetric, i.e.,

Pcc′ = 1
2 (p(c|c′) + p(c′|c)).

4.3 Optimization

Combining (4.2), (4.3) and (4.4) we obtain the complete form of our transductive

learning problem

min
W,Φ,B

1
2tr (Φ′ (µI + γWQW′) Φ) + 1

2tr (W′ (I + βΦLΦ′) W) +

+α
2

∥∥∥∥( X

Y

)
−
(

B 0n×p
0K×p W′

)(
Φ

ΦC

)∥∥∥∥2

F

,

s.t ‖Bi‖22 = 1, ∀i = 1, . . . , p

(4.6)

where β and γ controls how much the smoothness and the dependencies between

labels are embedded a�ect the learning outcome. Similarly to the precedent chapter,

an EM-like optimization algorithm is used to solve (4.6). Since the change from

binary to multi-class setting just involves the classi�er W and the kernel map Φ,

the update rule (3.7) of the basis B is reused.

4.3.1 Updating Classi�er and Basis

Since classi�ers Wc's depend on each other, an iterative optimization procedure

is required for every vector Wc to converge to a stationary solution. Assuming �xed
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Figure 4.1 � The toy data for multi-class problem ; shown in red square dots are

label vectors [1,−1]′, blue square dots are [−1, 1]′, and green square dots are [1, 1]′.

There is just one labeled sample for every class, i.e. diamond dots, and the others

are unlabeled.

Φ(t) (denoted simply as Φ) and enforcing the gradient of (4.6) to vanish (with

respect to W) leads to W(t) = Ṽ with Ṽ = lim
ς→ςmax

V(ς) and

V(ς)
c =

(
I + Φ (αC + βL + γMccI) Φ′

)−1 ·
[
αΦCY′ + γΦΦ′V(ς−1)P

]
c

(4.7)

In order to �nd B, let us assume that Φ(t) and W(t) �xed (de�ned simply as Φ,W),

then the following optimization problem

min
B

1
2 ‖X−BΦ‖2F s.t ‖Bi‖22 = 1, i = 1, . . . , p. (4.8)

is solved similarly as presented in Section 3.3.1.

4.3.2 Updating Kernel Map

Considering �xed B(t+1) and W(t+1) (denoted simply as B, W in the remainder

of this section), and the previous kernel map solution Φ(t), our goal is to �nd Φ(t+1)

by solving (4.6). The optimization problem (4.6) admits a unique solution Φ(t+1) =

lim
τ→τmax

Ψ(τ) and

Ψ
(τ)
i =

(
µI + αB′B + W (αCiiI + βDiiI + γQ) W′

)−1

·[
α
(
B′X + WYC

)
+ βWW′Ψ(τ−1)A

]
i

. (4.9)

Proof about this kernel map solution and its convergence to a �xed point are similar

to the Proposition 3.3.1. The process (4.9) allows us to recursively di�use the kernel

maps from the labeled to the unlabeled data, through the neighborhood system

de�ned in the graph {V, E}. The algorithm terminates when either ‖Ψ(τ)−Ψ(τ−1)‖ ≤
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ε or the iterative optimization algorithm reaches tmax iterations. The optimization

algorithm is summarized in Alg. 2.

Shown in Fig. 4.2 is the experiment results of applying the proposed method to

the toy dataset in Fig. 4.1. The dataset consists of two labels. In this example the

parameter γ = 0 since the label-dependency is not modeled by the toy data.

Algorithm 2 Multi-class kernel map learning

Input : labeled {(xi,yi)} `i=1 and unlabeled data {xi}mi=`+1

Initialization : compute the adjacency matrix A, degree matrix D, graph Laplacian L,

t← 0 and set Φ(0) to a random full rank matrix.

Repeat steps (1+2) until convergence OR t > tmax

1. Update W(t+1) by taking the limit Ṽ of (4.7), with V(0) = W(t−1).

2. Update B(t+1) using (4.8).

3. Update Φ(t+1) by taking the limit Ψ̃ of (4.9), with Ψ(0) = Φ(t).

Output : kernel maps {Φ(t+1)
i }mi=`+1 and labels {yi}mi=`+1 with yi =

(
W(t+1)

)′
Φ

(t+1)
i .

4.4 Experiments

In the remainder of this section we apply our method to the problem of multi-

class image annotation using two standard datasets MSRC and Corel5K. The MSRC

dataset includes 591 images from 23 categories mixing man-made and natural ob-

jects ; the class �horse� is omitted from the evaluation set as it appears only 2 times.

Note that the MSRC set was originally used for segmentation, so we adapt it to im-

age annotation by considering label information in every image and ignoring other

available information. As in [Liu 2010], the dataset is randomly split into two equal

subsets for training and testing. The Corel5K dataset contains 5000 images manually

annotated with 260 labels (each image has at least one label and may include up to

5 labels). This dataset is standard and widely used in the related image annotation

work ; it includes 4500 images for training and 500 images for testing. The test set

was built in order to guarantee that every label is used at least once.

4.4.1 Features and Graph Construction

Every image is divided into blocks using three grids of size 1×1, 2×2, and 1×3 ;

every block is represented by a bag-of-word histogram based on 512 visual words. The

latter result from the quantization of densely sampled SIFT descriptors extracted

from training images. We use six variants of SIFT descriptors [van de Sande 2010]

in order to obtain better visual discrimination : SIFT, rgbSIFT, rgSIFT, hsvSIFT,

cSIFT, and opponentSIFT. Every image is described with a super-descriptor corre-

sponding to histograms of 8 blocks ; this super-descriptor is normalized in order to

guarantee that its L2-norm is equal to 1.

Once vectorial representations of images are computed, a k-nearest neighbor

graph {V, E} is constructed in which the vertex set V consists of images and the
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(a) α = 1, β = 1 (b) α = 1, β = 10 (c) α = 1, β = 102

(d) α = 102, β = 102 (e) α = 102, β = 103 (f) α = 102, β = 104

(g) µ = 10−6 (h) µ = 10−8 (i) µ = 10−10

Figure 4.2 � The visualizations of learned kernel maps with di�erent con�gurations ;

the input data of this problem is depicted in Fig. 4.1. (a-c) : keeping α �xed and

slowly increasing β, test data are pulled more to their nearest labeled data. (d-f) :

Increasing α leads to small values of Φ (note the coordinate values on the axes).

(g-i) : Decreasing the value of rank regularizer yields clearer separation of the data.

With a large value of µ, the data tend to keep their geometrical shape as of the

input space.
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edge set E consists of links between similar images. Image similarity between two

arbitrary images of indices a and b is computed as

Aab = exp

− 1

2σ2

 Q∑
q=1

D(xqa,x
q
b)

Zq

2 (4.10)

where D(·, ·) measures the dissimilarity between two feature vectors xqa and xqb of

feature type q ; in our experiments Q = 6 and D(·, ·) is de�ned based on histogram

intersection distance, i.e., D(xqa,x
q
b) =

∑n
i=1(1 −min([xqa]i, [x

q
b ]i)). Since every fea-

ture type has its own value range, we normalize the dissimilarity scores by the factor

Zq in which Zq =
∑

abD(xqa,x
q
b)/m

2. If we denote Dab =
∑Q

q=1

(
D(xqa,x

q
b)/Zq

)
, the

bandwidth σ is empirically estimated as σ =
∑
{a,b}∈E Dab/(km) in which {a, b} ∈ E

denotes all the image pairs {a, b} where there exists a graph link between images a

and b. Notice that every image is connected to its k most similar images which are

taken from m images (k � m) of the database ; if a is disconnected from b, then

Aab = 0. The resulting a�nity matrix A is symetrized by taking A← (A + A′)/2

instead of A.

4.4.2 Evaluation Measures

Di�erent evaluation criteria are used in order to measure the quality of this

annotation process including precision (denoted P), recall (denoted R) and positive

recall (denoted N+) ; these criteria are de�ned as

P = Eω
(number of images correctly annotated with a label ω

number of images annotated with ω

)
R = Eω

( number of images correctly annotated with a label ω
number of images annotated with ω in the ground truth

)
N+ =

∑
ω 1{(number of images correctly annotated with a label ω) ≥ 1},

here the expectation Eω is with respect to all possible labels {ω} in our dataset. We

further benchmark the quality of label assignment using break-even point (denoted

BEP [Grangier 2008]), with

BEP = Eω
(number of images correctly annotated with a label ω in a sorted list of Nω images

Nω

)
here Nω is the number of images annotated with ω in the ground truth and the

list of Nω images is sorted by decreasing classi�cation scores. By varying the size of

the sorted lists and taking the expectation of precision, with respect to this size, we

obtain the mean average precision (denoted mAP).

4.4.3 Results and Discussion

Given the training and the test sets, we de�ne our neighborhood system using

an adjacency graph where each node corresponds to an image and an edge connects
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two images if they are visually similar. Using this neighborhood system, we run our

optimization procedure in order to measure the membership of a given test image to

di�erent classes ; these memberships correspond to the scores of di�erent classi�ers.

A label is then assigned to a test image i� its classi�er score is among the 5 largest

values.

In what follows we denote TKL and wTKL for results produced by (4.6) with

γ = 0 and γ > 0 respectively. In all these experiments the size of the neighborhood

is �xed at k = 3. We use the normalized graph Laplacian L̃ = I − D−1A. The

setting of i) the data �tting coe�cient is α = 1, ii) the smoothness coe�cient is

β = 1, iii) the low-rank coe�cient is µ = 10−8, ε = 10−2, iv) the maximum number

of iterations for (4.7) and (4.9) to converge are ςmax = 5 and τmax = 20 respectively,

v) the maximum number of iterations for (4.6) to derive its �nal solution tmax = 5.

4.4.3.1 Does Label-Dependency Help ?

Empirical results demonstrate that modeling dependencies between labels con-

tributes positively in retrieving more rare keywords from the Corel5K dataset. From

Table. 4.2 we can observe that this model increases the number of recalled keywords

N+ from 140 to 165. As a consequence, the average recall rate is signi�cantly im-

proved at the detriment of a small degradation of the precision. Fig. 4.3 describes

in details how the label-dependency model a�ects the annotation performance. Ac-

cording to this �gure, a signi�cant improvement of the recall from 35% to 42% when

γ is increased from 10−2 to 1 with a slight decrease of the precision from 28% to

26% and also BEP. For example, more correct keywords are found in examples of

Fig. 4.4(a) and Fig. 4.4(b) due to the use of the label-dependency model. However,

continuing to increase γ do not enhance either recall or mAP ; instead, it reduces

the precision, i.e., from 26% to 23% when γ is increased from 1 to 10 or 100. In

Fig. 4.4(c), the two incorrect labellings kauai and train � made by the basic formula

TKL � provide two other incorrect labels locomotive and railroad, which are highly

correlated to train and kauai, thus making the labeling wrong.

We also tested the behavior of label-dependency model in the MSRC dataset ;

however, its e�ect is not as clear as in the Corel5K dataset. This is because the

number of labels in MSRC dataset is so small and occurrence frequencies of labels

are approximately equal. As a result, label-dependency may be useful if the dataset

consists of many labels and those labels are highly imbalanced, or some of them

are di�cult to recognize due to either their less discriminative appearances or their

non-visual meaning. More annotation examples are shown in Fig. 4.7.

Remarks Label-dependency modeling is highly related to the problem of imbal-

anced databases. This is an inherent problem of learning problems where the fre-

quencies of classes � according to the input dataset � are unequal. [He 2009] in-

vestigates the nature of imbalance and states that its causes can be intrinsic (for

example, rare object instances) or extrinsic (for example, biased acquisition due to

human factor [Torralba 2011]). From machine learning point of view, data imbal-



72 Chapitre 4. Multi-class Kernel Learning

0 1e−2 1e−1 1 1e1 1e2
20

25

30

35

40

45

50

γ

 

 

Precison

Recall

mAP

BEP

Figure 4.3 � The evolution of the evaluation measures with respect to the label-

dependency parameter γ. As γ is increased from zero to one, precision tends to

decrease slightly while recall increases from 35 % at γ = 10−1 to 42 % at γ = 1. The

label-dependency term allows our algorithm to retrieve more keywords (i.e the N+

measure in Table 4.3) which are the main factors that increase the average recall.

ance needs to be avoided, especially for nonparametric methods (such as k-Nearest

Neighbors based methods [Makadia 2008] and SVM [Cortes 1995]) where a part of

input data are kept for future prediction. For our particular case, the smoothness

term in the TKL formula is a�ected by imbalanced training data. According to a

survey [He 2009], popular rebalancing techniques include data re-sampling meth-

ods and cost-sensitive learning algorithms (for example SVM with imbalance class

weights [Chang 2011]). We argue that such techniques are systematic since they ne-

glect underlying causes of imbalance and do not consider relationships between data

which may help. As shown above, the label dependency modeling can remedy such

imbalance cases.

4.4.3.2 Comparison with Related works

Inductive methods. We consider three state-of-the-art methods : (i) standard

SVM classi�er [Vapnik 1998a] with 4 kernel choices (linear, RBF, χ2, Histogram In-

tersection) ; (ii) Multiple Kernel Learning SVM (MKL) implemented by the SMO al-

gorithm [Vishwanathan 2010a] ; (iii) SVM for multi-class classi�cation implemented

by M3L [Hariharan 2010]. Parameters of each method are optimally tuned using

k-fold validation on the training data. For MKL, we use SMO solver with L2 reg-

ularization. Note that MKL is extensively trained using 36 Gram matrices taken

from the combination between the 6 kernels (linear, χ2, Histogram Intersection, and

RBF with 3 scales values) and the 6 visual descriptors listed in Section 4.4.1. We
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(a) Before : ocean, coral,

reefs, people, water ; After :

coral, ocean, reefs, �sh, fan.

(b) Before : tree, water,

buildings, sky, mountain ;Af-

ter : tree, roofs, water, arch,

temple.

(c) Before : tree, sky, sunset,

kauai, train ; After : kauai,

locomotive, train, railroad,

sunset.

Figure 4.4 � Examples of the Corel5K dataset that demonstrate how label-

dependency could be used to improve the annotation task. Every example shows

the annotation results before and after adding label-dependency ; underlined key-

words are the correct labels while italic keywords are the correct ones discovered due

to the label-dependency model. In Fig. 4.4(a), the occurrence of coral, ocean, and

reefs imply a high probability that �sh is also present in the scene. In Fig. 4.4(b),

the co-occurrence of labels such as roofs and arch leads to the presence of temple.

In Fig. 4.4(c), the occurrence of the two false labels kauai and train promotes the

presence of other false labels locomotive, train, and railroad too.
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Figure 4.5 � The comparative results of the MSRC dataset between our methods

(TKL and wTKL) and the best con�gurations of the related works. See Table 4.1

for numerical values.

use libSVM 1 as the standard implementation for SVM while the implementations

of M3L and MKL are taken from the websites of their original authors.

Transductive Methods. LapSVM [Melacci 2011] and TranSVM [Joachims 1999]

are taken into account for comparison. LapSVM is more related to our method since

both include the smoothness regularization term. The implementation of LapSVM

is taken from [Melacci 2011] and that of TranSVM from SVMlight 2.

1. http ://www.csie.ntu.edu.tw/ cjlin/libsvm/
2. http ://svmlight.joachims.org/
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Figure 4.6 � The comparative results of the Corel5K dataset between our methods

(TKL and wTKL) and the best con�gurations of the related works. See Table 4.2

for numerical values

Table 4.1 and plots in Fig. 4.5 show results and comparison on the MSRC dataset.

A �rst conclusion indicates that methods relying on both labeled and unlabeled data

provide better performance. Our method and other transductive methods LapSVM

and TranSVM perform slightly better than inductive methods such as SVM and

MKL ; however, the inductive M3L method is the most performant one. It turns out

that the MSRC dataset is not challenging enough in order to see a clear advantage

of transductive over inductive methods.

Di�erences between the two approaches become clearer on the Corel5K database

(see Table 4.2 and Fig. 4.6). As expected the inductive methods perform worse than

the transductive ones. In particular, SVM is the worst (with low recall and the

number N+ of keywords whose recalls are positive is low too). MKL is better than

SVMs ; however, it is not better than M3L and transductive methods including

ours. This is easy to understand because M3L has the training loss speci�cally de-

signed for multi-class problems and the prior constraint on label correlation as well.

Among transductive methods, LapSVM performs worst while TranSVM slightly

outperforms the standard version of our method. Nevertheless, our method with

label-dependency is comparable with the best con�guration of TranSVM, the one

that uses histogram intersection kernel.

Finally, we compare annotation performance of our method against evaluations

reported in some related works (see Table 4.3). In general our method performs

better than recent works such as JEC [Makadia 2008] and GS (group sparse cod-

ing) [Zhang 2010] and the graph-based method MSC [Wang 2009, Liu 2010]. For

the state-of-the-art TagProp [Guillaumin 2009], our method is competitive : it has

similar recall, better at N+ and mAP, but slightly worse precision and BEP.

4.5 Summary

In this chapter we introduced the multi-class extension of our transductive kernel

learning algorithm and demonstrated its use with the image annotation application.

At the end of this chapter we accomplished two objectives. First, we proposed a
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SVM M3L
MKL

lin rbf hi χ2 lin rbf hi χ2

P 43 44 44 44 46 46 46 46 44

R 78 80 81 80 85 85 83 85 79

N+ 22 22 22 22 22 22 22 22 22

mAP 54 84 56 84 74 87 85 85 57

BEP 60 71 64 69 87 75 72 73 63

LapSVM TranSVM TKL

linear rbf hi χ2 linear rbf hi χ2 std w

P 41 46 43 41 42 42 40 40 42 40

R 77 79 78 77 85 85 83 85 82 86

N+ 22 22 22 22 22 22 22 22 22 22

mAP 88 85 86 87 73 87 87 87 86 84

BEP 71 71 74 70 72 73 74 73 71 71

Table 4.1 � Comparative results of the MRSC dataset between our

method and the related works : SVM [Vapnik 1998a], M3L [Hariharan 2010],

MKL [Vishwanathan 2010a], Laplacian SVM [Melacci 2011], and Transductive

SVM [Joachims 1999]. Four kernel functions (linear, Gaussian RBF, Histogram In-

tersection, χ2) are tested for the methods SVM, M3L, LapSVM and TranSVM. The

MKL-SVM is trained based on 36 combinations of six kernels (the four kernels men-

tioned above in which the RBF kernel has respectively 3 di�erent bandwidths) and

six visual descriptors.

more e�cient way in applying transductive kernel learning algorithm into multi-

class problems. Second, we proposed the label-dependency model which exploits

prior information of the image database in order to improve the recall. Evaluations

on the MSRC and Corel5k datasets show that our method is competitive with related

works which are speci�cally designed for the image annotation task. The multi-class

transductive kernel learning is also extended for image interpretation problem in the

subsequent chapter. For the image annotation problem itself, our plan is to extend

to images on social networks and consider auxiliary information of images such as

tags, user pro�les, and geographical locations in order to improve annotation quality.
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SVM M3L
MKL

lin rbf hi χ2 lin rbf hi χ2

P 24 30 28 26 28 31 31 32 32

R 15 19 18 17 32 32 30 31 25

N+ 80 97 91 85 133 122 119 124 113

mAP 24 32 30 26 34 40 38 39 36

BEP 35 36 36 38 40 37 37 39 38

LapSVM TranSVM TKL

linear rbf hi χ2 linear rbf hi χ2 std w

P 25 24 24 24 26 28 30 30 28 26

R 32 32 30 32 35 37 40 39 34 42

N+ 126 129 112 129 155 150 157 155 140 165

mAP 40 39 35 39 41 41 44 42 42 48

BEP 25 33 38 31 31 32 33 32 34 33

Table 4.2 � Comparative results of the Corel5K dataset between our

method and the related works : SVM [Vapnik 1998a], M3L [Hariharan 2010],

MKL [Vishwanathan 2010a], Laplacian SVM [Melacci 2011], and Transductive

SVM [Joachims 1999]. Four kernel functions (linear, Gaussian RBF, Histogram In-

tersection, χ2) are tested for the methods SVM, M3L, LapSVM and TranSVM. The

MKL-SVM is trained based on 36 combinations of six kernels (the four kernels men-

tioned above in which the RBF kernel has respectively 3 di�erent bandwidths) and

six visual descriptors.

Precision Recall N mAP BEP

CRM [Lavrenko 2003] 16 19 107 - -

InfNet [Metzler 2004] 17 24 112 - -

NPDE [Jeon 2003] 18 21 114 - -

MBRM [Feng 2004] 24 25 122 - -

SML [Carneiro 2007] 23 29 137 - -

TGLM [Liu 2009a] 25 29 131 - -

MEG [Liu 2010] 25 31 - - -

MSC [Wang 2009] 25 32 136 42 -

JEC [Makadia 2008] 27 32 139 - -

GS [Zhang 2010] 30 33 146 - -

TagProp [Guillaumin 2009] 33 42 160 42 36

PAMIR [Grangier 2008] - - - 26 17

TKL 28 34 140 42 34

wTKL 26 42 165 48 33

Table 4.3 � Overview of performance of our proposed method and some previous

works in annotating 500 test images of Corel5K dataset.
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(a) �owers, sky,

�eld, tulip, tree ;

�owers, tulip, �eld,

garden, sky

(b) ruins, stone,

grass, sculpture,

pyramid ; ruins,

stone, pyramid,

sculpture, stairs

(c) sunset, tree,

beach, water, people ;

sunset, beach, tree,

horizon, water

(d) sky, clouds,

mountain, tree, land-

scape ; clouds, sky,

landscape, hillside,

mountain

(e) tiger, cat, tree,

rocks, bengal ; tiger,

cat, bengal, forest,

rocks

(f) people, indian,

close-up, man, face ;

indian, people, man,

face, woman

(g) rocks, sand,

close-up, squirrel,

water ; squirrel,

rocks, sand, close-up,

water

(h) water, people,

sky, sand, tree ;

water, people, sky,

sand, harbor

(i) mountain, sky,

clouds, tree, terrace ;

terrace, mountain,

clouds, village, hut

(j) people, tables,

window, plants,

light ; people, tables,

restaurant, window,

light

(k) people, water,

museum, outside,

boats ; outside,

people, museum,

dance, water

(l) tree, water, peo-

ple, buildings, gar-

den ; water, tree, peo-

ple, scotland, garden

(m) building, grass,

sky, aeroplane, road ;

building, grass, sky,

aeroplane, road

(n) building, tree,

car, sign, road ; build-

ing, tree, car, bicycle,

road

(o) water, face,

bird, body, road ;

mountain, water,

bird, body, boat

(p) building, tree,

sky, car, road ;

building, tree, sky,

car, road

Figure 4.7 � Some annotation examples of our method with the Corel5K dataset

(the three �rst rows) and the MSRC dataset (the bottom row). Underlined keywords

are true positive labels while non-underlined keywords are false alarms. Shown in

italic texts are predicted labels of TKL while the upright texts are the labels of

wTKL (with label dependency). The label dependency model exhibits its ability to

recall labels in examples (b,e,i,j,k,l), which are either related to visual content of

test images or due to prior relationships between labels. If not predicting the true

labels, wTKL also provides labels closely related to semantic content of images, for

example see (a,c,d,h). There is virtually no improvement made by wTKL on the

MSRC dataset.





Chapitre 5

Contextual Kernel Learning for

Scene Interpretation

In this chapter we develop our algorithm based on transductive kernel learning

in order to solve the problem of scene interpretation. This problem amounts to auto-

matically segment objects from a scene and then name them with labels. This is the

general case of the interactive object segmentation problem introduced in Chapter 3.

However, di�erent from that task where human intervention is required in order to

give hints for the classi�er, the proposed method in this chapter makes classi�cation

automatic ; a database of fully labeled images is given as a source providing neces-

sary training examples (a.k.a hints) for every test case. The novel contributions of

this chapter are regularization designs that make the multi-label transductive ker-

nel learning introduced in Chapter 4 adapted to the scene interpretation problem.

Our contextual model incorporates prior knowledge of label co-occurrence statistics

computed from training data into the kernel learning process. Empirical results with

the SiftFlow dataset show that the proposed model improves labeling coherency and

obtain competitive performance with the state of the art.

Parts of this work were mentioned in the following submission :

1. Phong Vo, Hichem Sahbi, Contextual Kernel Map Learning for

Scene Transduction, ECCV, Switzerland, 2014.
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5.1 Contextual Relationships in Scene Interpretation

Scene interpretation is the task of detecting, localizing and classifying visual

objects in a given scene. If pixels of an input image are considered as data points,

scene interpretation assigns labels to those pixels such that the resulting labeling

forms a meaningful scene. In �guring out which pixels belong to which labels, visual

descriptors are extracted and used as input features for a classi�cation algorithm.

These descriptors can be low-level (color histogram, textons, shape descriptors, His-

togram of Gradient � HOG) or mid-level (Bag-Of-Word histograms of SIFT, texton,

HOG). The discrimination power of those features allows the classi�er to capture

the variability of visual objects up to a certain degree but may fail in cases they are

not discriminative enough.

Contextual features may help to disambiguate such complex cases ; those features

are not derived from the appearance of objects itself but from their relations. For

instance, Fig. 5.1 illustrates the usefulness of contextual information in order to

infer the meaning of a scene. This example suggests us that scene comprehension

is not as simple as recognizing a list of objects. Therefore, contextual relations are

necessary for machine learning methods to exploit and improve the quality of scene

interpretation.

In fact the use of contextual features in computer vision is related to the vi-

sual reasoning of an adult where contextual rules of the physical world have been

learned during his infant period. According to �ndings in visual cognition and psy-

chology [Biederman 1972, Bar 2004, Bar 2005, Cox 2004, Biederman 1982b], it is

su�cient to induce scene coherency based on the following �ve rules : support, in-

terposition, probability, position, and familiar size.

(a) An unidenti�ed object. (b) The object is disam-

biguated with the help of its

context.

Figure 5.1 � The left shows an image region of the right scene. By solely looking at

this part we hardly recognize what are the tiny dark blobs. However, supplemental

context provided by the right picture will �gure out those blobs are cattle (cows,

bu�aloes, or something like that) because they are enclosed by a hedge-like object

and there is also a farm house nearby.
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Based on the de�nitions of these rules, we can further divide them into two

groups [Biederman 1982b] : physics rules (support and interposition) and semantic

rules (probability, position, and size). The �rst group � also called syntactic group

� consists of physics rules of image formation ; the second group judges whether

a scene is coherent based on the referential meaning of the objects. According to

[Biederman 1982b], syntactic relations are more complex but less informative than

semantic ones. In the following we discuss these semantic rules.

� Probability. It is the likelihood of spotting an object with respect to some

scenes or some objects but not others [Wolf 2006]. In other word, it is the

probability for an object to co-occur with other object or scene such as the co-

occurrence between the cows and the �eld in Fig. 5.1 or between the street and

the tra�c sign in Fig. 5.2. The probability rules help disambiguating objects

whose appearance not informative enough.

� Position. It is the probability for an object to be found at its familiar locations

conditioned by the familiar locations of other objects. It is not di�cult to �nd

such examples : sky is always on the top of sea or sidewalks are on the side of

streets. It is easy to realize that positional co-occurrence is conditioned by the

semantics of the objects. In other word, the rule is not only associated to the

spatial information but also the semantics of the objects. Thus the position

rule is a probability rule with additional spatial constraints.

� Scale. This rule states that objects should admit a certain variation of size

with respect to those of other objects in the scene. This rule exists as the

relative sizes between objects in a scene. For instance, objects at close distances

seem to be larger than the ones faraway. In order to use this rule, we must

know a priori object identities as well as their extent in the image. In other

word, the applicability of the scale rule is conditioned by the availability of

the probability and the position rules. It also means that the scale rule is more

di�cult to use.

Discussions. In practice, the probability rule brings out the most valuable in-

formation for disambiguation. The reason is that scale and position relations may

drastically vary from image to image while probability relations are quite invariant

across scene images of a same category. The probability rule is also easy to compute ;

one of the simplest realization of the probability rule is to compute the co-occurrence

matrix between objects or regions. As a results, many of current scene interpretation

algorithms, as we revise in the subsequent section, restrain themselves to the rules

of probability and sometimes position rules are also considered. The scale rule can

also be incorporated, but as we will see, it is rather encoded as feature descriptors

than relations.
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(a) What is this patch ? (b) The tra�c sign suggests

the identity of the texture-

�atted patch.

(c) The original scene.

Figure 5.2 � Fig. 5.2 demonstrates another di�cult case when the object appear-

ance is homogeneous. The masked region in Fig. 5.2(a) does not give us any semantic

meaning. However, with the co-occurrence of a sign near a barrier in Fig. 5.2(b), one

can infer the gray patch as a part of the street. In this case, context helps improve

the object discrimination.

5.2 Related Works

In this section we discuss major approaches that integrate semantic rules into

machine learning models. Top-down approaches require an overall understanding of

the whole scene. However, studies of top-down approaches just stop at designing

visual descriptors for scene categorization [Oliva 2006]. For bottom-up approaches,

image pixels can be aggregated in order to form more meaningful objects and parts ;

the aggregation may continue in higher levels until a coherent scene is formed. A

study in visual attention [Rutishauser 2004] has demonstrated that the bottom-

up processing signi�cantly improves object recognition in complex scenes. In this

section, we revise bottom-up variants with di�erent starting points of the �bottom"

pixels, image regions, or objects.

5.2.1 Pixel-wise Interaction

This is the most basic contextual interaction in which neighboring pixels tend

to get similar labels except at discontinuities [Shotton 2009, Wolf 2006, Liu 2011a].

Pixel-wise interaction does not need any preprocessing such as object segmentation

or detection because the pixels themselves aggregate in order to form complete

objects [Carbonetto 2004, Shotton 2009]. The limitation of this approach is that

such interactions are short-range, thus they could not perform well on complex

scenes where objects are highly cluttered. A wider interaction is necessary in order

to cope with such complex cases.
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5.2.2 Object Interaction

Given a list of object candidates detected from a scene, object interaction ap-

proaches relate those candidates by semantic rules in order to improve the contextual

agreement between them, for instance the boosted classi�ers [Fink 2003, Wolf 2006]

and the network of logistic regression classi�ers [Murphy 2003]. On the plus point,

this approach is appropriate for scenes with rigid objects such as man-made objects

of indoor scenes. However, this approach has problems with scalability. An object

detector needs to be trained whenever a new object is considered. Moreover, object

detection is time-consuming due to the exhaustive search of the detectors over the

whole image at di�erent scales.

5.2.3 Region-wise Interaction

This approach requires an input image to be over-segmented into regions (also

called superpixels) such that the visual appearance within every region is quite

homogeneous and bounded by discontinuities of object boundaries or the bound-

aries between two di�erent texture and/or color regions. Region-based representa-

tion provides more meaningful information because more visual discrimination can

be achieved from those regions ; moreover, the shapes of regions re�ect a certain

geometrical con�gurations of their belonging objects. For example, the scale of the

unknown objects contained in the input image can be inferred based on the size of

the region(s).

Because of such advantages, region-based interactions have been widely ap-

plied. For instance, [Galleguillos 2008, Rabinovich 2007b, Tighe 2010, Chen 2011a,

Vieux 2011] model the interactions between over-segmented regions in or-

der to merge them into complete objects with appropriate labels. Especially,

[Galleguillos 2008, Chen 2011a] further consider relative location (below, above,

around, inside) and label co-occurrence in order to exploit prior knowledge of the

spatial arrangement of objects in scenes. A more sophisticated relative location prior

is explored in [Gould 2008] while [Parikh 2008] learn the co-occurrence statistics

conditioned on both position and scale.

5.2.4 Hierarchical Interaction

When region-wise interaction is not able to to model long-range dependencies,

the range of interaction can be expanded via associating regions as a hierarchical

tree in which its leaf nodes are image regions while inner nodes correspond to the

union of several adjacent regions ; �nally the root node covers the whole image. By

relating adjacent regions using hierarchical models, contextual dependencies between

remote regions can be taken into account. For instance, the two-layer hierarchical

framework of [Kumar 2005] uses CRF model in order to interpret images at di�erent

levels of segmentation ; similarly, the hierarchical random �eld in [Ladicky 2009]

allows the integration of the features computed at di�erent quantization levels i.e.,
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Figure 5.3 � The region-wise interaction approach requires an over-segmentation

step in which the input image in partitioned into many regions (a.k.a super-

pixels). The �gures above are the segmentation results of the graph-based algo-

rithm [Felzenszwalb 2004] with di�erent degrees of fraction. With over-segmentation

(left), objects are likely to be divided into several regions ; with under-segmentation

(right), several objects are merged with each other. Since the segmentation algo-

rithm is unsupervised, choosing a good segmentation is very di�cult. Nevertheless,

this region-based approach reveals some information of the objects in the image : (i)

some regions retain boundary information of the original objects, (ii) the size and

the span of every region re�ect the scale and the shape of the object(s) covered by

that region.

pixel-, region- and inter-region levels. In contrast, [Munoz 2010], parses images into

a hierarchy of regions and then solves every recognition subproblem for every region.

5.2.5 Source of Contextual Information

Contextual statistics are often computed from a database of labeled im-

ages, for instance [Rabinovich 2007b, Tighe 2010, Parikh 2008]. In other cases,

they are computed from external sources such as Google Search's results and

WordNet [Rabinovich 2007a]. Although retrieval results obtained by Google may

be contaminated by noise, it is useful if the image database is poorly labeled

or highly imbalanced. Recent works [Jain 2010, Malisiewicz 2009, Myeong 2012,

Eigen 2012a, Tighe 2010] computed contextual statistics dynamically. For example,

[Eigen 2012a, Tighe 2010, Myeong 2012] use the test image as a query in retrieving

a subset of similar images from the labeled database. This subset is used as a source

of training data and contextual statistics.

5.2.6 Machine Learning Techniques

Due to complex interactions between entities (pixels, objects, regions), graphical

models [Bishop 2006] are used as a �exible machine learning framework. Graphical

models provide convenient ways to mimic belief reasoning in human using probabilis-

tic models. Speci�cally, they allow the factorization of a joint probability of random

variables into a product of probabilities which are easier to model. Analogously, if
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we de�ne adjacent pixels or regions as random variables, then contextual interaction

will be de�ned as the joint probability of those subset of variables. Graphical models

are generally classi�ed into undirected and directed models ; the former concern sym-

metric contextual relations between random variables and the latter emulates causal

relationships between random variables [Torralba 2003, Singhal 2003, Li 2009]. Par-

ticular popular cases of undirected graphical models include Markov random �eld

(MRF) [Carbonetto 2004, Tighe 2013, Myeong 2012, Eigen 2012a] and conditional

random �elds (CRF) [Kumar 2006, Kumar 2005, Rabinovich 2007b, Shotton 2009].

The major advantage of graphical models is their �exibility in modeling various types

of contextual relations such as short-range (pixel-pixel or object-object), long-range

(object-object or object-region), and hierarchical relations.

5.3 Contextual Kernel Learning

Di�erent from the machine learning approaches mentioned above, we propose

a novel solution for scene interpretation based on our transductive inference algo-

rithm (introduced in Chapter 4). We adopt the data-driven approach [Liu 2011a,

Russell 2007a, Tighe 2013, Eigen 2012a] in order to prepare the training data : the

test image is used to retrieve from the labeled database a small set of training im-

ages which are similar to the test one. As depicted in Fig. 1.4, both the test and

training images are over-segmented into superpixels ; they are the input for our al-

gorithm based on multi-class transductive kernel learning. Beside transferring label

information from the labeled superpixels to the unlabeled ones, the test image must

be labeled with respect to contextual constraints. It means that prior knowledge

about semantic relationships between object classes � the one that is extracted from

the training data � are used to disambiguate predictions of superpixels whose ap-

pearances are not discriminative enough. We test with two regularization methods

and found that such regularizers are useful for scene interpretation.

Compared with popular methods used for scene interpretation, our method is

among the few algorithms which use transductive inference for scene interpretation.

For instance, [Myeong 2012] uses a graph-based label propagation algorithm, which

is a transductive method ; however, it is just a preprocessing step in order to learn

contextual features fed to a later MRF-based inference stage. On the contrary, our

scene interpretation framework is entirely based on multi-class transductive kernel

learning, which jointly learns a shared low-dimensional kernel map and max-margin

classi�ers. While the multi-class formula is reused from Chapter 4, the contribution

of this chapter is the introduction of new context regularizers. These regularizers

implement two semantic rules of probability and position. In order to avoid confusion

with mathematical notations of probability and statistics, �probability rules� is also

referred to as �semantic context.�

Following the problem statement below, Sections 5.3.2 and 5.3.3 describe the

construction of the semantic and position regularizers respectively. A nice property

is that these two regularizers admit the same mathematical form so that the opti-
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mization algorithm presented in Section 5.4 is identical for both of them. The end

of this section is a short introduction of the spatial smoothing term and its use in

smoothing recognition results.

5.3.1 Problem Statement

Given that the input data is the set S =
⋃T+1
t=1 {(xt1, yt1), . . . , (xtmt

, ytmt
)} which

is the union of superpixels extracted from (T + 1) images in which the �rst T

images are labeled and the (T + 1)th one is unlabeled. In order to cancel image

index t, we re-index the input data as follows. The �rst ` superpixels, which are

extracted from the T training images, are labeled, i.e., yi 6= 0, ∀i = 1, . . . , ` ; the

next (m − `) superpixels, which are extracted from the test image, are unlabeled ;

notice that m =
∑T+1

t=1 mt. Our objective is to assign to each of the unlabeled

superpixels {xi}mi=`+1 one of the K labels � these labels must appear at least once

in the labeled images. Although a superpixel may contain more than one object

part, for simplicity we assume that every superpixel is labeled by one class ; in cases

a superpixel contains several labels, then the most dominant one is chosen as the

groundtruth. As a result, entries of label vector yi ∈ RK (i ≤ `) are zeros except

the cth entry where c is the index of the semantic presented in superpixel i.

Given a �nite training sample {(xi,yi)}, a function of the form y = W′φ(x)

is learned in order to relate an input descriptor x with the corresponding output

label y ; here φ(x) is a kernel map and W ∈ Rp×K is the weight matrix where p is

the dimensionality of the target feature space de�ned by φ. In the previous chapter

we introduced the multi-class transductive kernel learning whose objective is to

learn the kernel map Φ = φ(X) and the classi�er W from the input data X whose

label matrix Y is partially labeled, i.e., only the �rst ` columns are known. Using

this formulation as a basis for the scene interpretation problem, we design additional

regularizers in order to tailor our basic formulation to the speci�cities of the problem.

The proposed regularizers exploit the semantic and position relationships between

object labels in scene images such that the labeled result is coherent with respect

to the contextual rules.

5.3.2 Regularization on the Semantic Context

If it is di�cult to recognize an object by its appearance, then its surrounding

objects (a.k.a its context) may reveal valuable information about the object of inter-

est (see again the example in Fig. 5.2). In practice, this sort of contextual support

is frequently used by human : we look for cars on roads, boats on waters, books on

tables, �owers in gardens, etc. Objects in these examples not only co-occur together

but also are close to each other. In other word, these examples are the instances of

the probability rule mentioned in Section 5.1.

Let us denote p(c|c′) the conditional probability for an object with label c to

be adjacent with another object with label c′ ; if the probability p(c|c′) is high,

then it is frequent � in the image database � that objects of label c are adjacent
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(a) Some examples of the data used to compute the co-

occurrence statistics between object labels.
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(b) The likelihood table which shows conditional probabilities of a la-

bel to appear close to another label. A strong probability is displayed

with a hotter color, i.e., the probability values of p(sky|mountain),

p(car|road), p(window|building).

Figure 5.4 � The computation of the co-occurrence statistics of the semantic con-

text.

with objects of label c′. Furthermore, if p(c|c′) > p(c|c′′), then objects with label

c are more likely to co-occur with objects of label c′ than those of label c′′. If

the conditional probability p(c|c′) is high enough, then it is more likely that c ←
argmaxbWbΦi and c

′ ← argmaxbWbΦj given that superpixels i and j are adjacent.

Without loss of generality, let us assume that the response WcΦi is already high

such that the superpixel i gets label c, then the following energy term is minimized
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for the superpixel j to get label c′ :

1

4

m∑
i=`+1

m∑
j=`+1

K∑
c=1

K∑
c′=1

(
W′

cΦi −W′
c′Φj

)2
p(c|c′)δ(i ∼ j). (5.1)

In the above equation, the delta Dirac function δ(i ∼ j) = 1 if only if the superpixel

i is adjacent to the superpixel j. Our problem is how to compute p(c|c′) given a

labeled database. Let us denote the counting matrix N ∈ RK×K whose entry at row

c and column c′ equals

Ncc′ =

T∑
t=1

mt∑
i=1

mt∑
j=1

δ(i ∼ j)×

(
[yti ]c
qtc
×

[ytj ]c′

qtc′

)
, (5.2)

in which [yti ]c and [ytj ]c′ are the values at cth and c′th entries of label vectors yi
and yj given that both i and j are two superpixels of the tth training image. The

normalization factors qtc and q
t
c′ are computed as

qtc =

mt∑
i=1

[yti ]c and qtc′ =

mt∑
i=1

[yti ]c′ . (5.3)

The formula (5.2) means that the entry Ncc′ is increased by an amount of 1/(qtcq
t
c′)

whenever a co-occurrence between the labels c and c′ is detected given that δ(i ∼
j) = 1. The factors qtc and qtc′ , which are the number of superpixels labeled by

c in tth image, are used to reduce the e�ect of uneven object size. For instance,

images in Fig. 5.4(a) are over-segmented into dozens of superpixels ; a building is

decomposed into many more superpixels than those of a car due to the relatively

bigger size and more sophisticated details of a building than a car. If we increased

by 1 the occurrence of a pair of adjacent superpixels labeled as building and car

respectively, then the accumulating matrix N becomes super�uous because there

may exist several superpixels of the building which are adjacent to one superpixel

of the car. In other word, the entry Nbuilding|car would be counted several times

more than Ncar|building. Besides, our implication in using context is to support more

for rare and small objects because more frequent or bigger objects can be identi�ed

easier : a larger area contains more visual details which lead to better discrimination

(compare small versus large superpixels in Fig. 5.4(a)). Following (5.2), an object

with a big size results into a large number of superpixels decomposed by that object

and this leads to a larger value of the factor qtc. Eventually (5.2) counts more for co-

occurrences of two small objects, less for those of a big and a small objects, and least

for those of two big objects. Notice that object size is not determined in (5.2) but

the preprocessing step of over-segmentation (see Fig. 5.4(a)). Consequently, (5.2)

counts label co-occurrences and remedies imbalanced data at the same time.

In order to convert the counting values into probability, every entry Ncc′ is

divided by their sum of row and column respectively, i.e.,

p(c′|c) =
Ncc′∑
c′′ Ncc′′

and p(c|c′) =
Ncc′∑
c′′ Nc′′c′

. (5.4)
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5.3.3 Regularization on the Position Context

The next contextual relationship that we consider is the position co-occurrence

between labels. This relationship is the implementation of the position rule, which

states that the co-occurrence between labels is likely to appear at some speci�c

positions and less likely to appear at other positions. There are many examples

supporting this rule, for instance the sky is above and the sea is below (and see

more examples in Fig. 5.5). Given two superpixels i and j positioned at the areas

Ri and Rj respectively in the test image, p(c|c′;Ri, Rj) is the probability for the

superpixel i located at Ri to get label c conditioned on the superpixel j located at

Rj gets label c
′. In this notation, c and c′ are random variables while Ri and Rj are

not ; instead Ri and Rj are the �xed regions of the superpixels i and j. Similarly to

the previous context regularizer, the position context is introduced into our learning

framework by minimizing the following energy term

1

4

m∑
i=`+1

m∑
j=`+1

K∑
c=1

K∑
c′=1

(
W′

cΦi −W′
c′Φj

)2
p(c|c′;Ri, Rj). (5.5)

The rest problem is how to evaluate the probability p(c|c′;Ri, Rj) given a

database with labeled superpixels and their positions. Due to irregular shapes of

superpixels, it is easier for us to estimate the co-occurrence frequency by partition-

ing an image using a rectangular grid ; it is a 10 × 10 grid in our case. Then we

compute the joint probability p(z, z′, c, c′) measuring the co-occurrence of labels c

and c′ at their respective positions z and z′. Here z and z′ get one of 10× 10 = 100

di�erent positions in the image. By counting the number of images whose positions

at z and z′ are labeled as c and c′, we obtain the joint probability p(c, c′, z, z′), i.e.,

p(c, c′, z, z′) =

∑T
t=1 δ (c = It[z]) δ (c′ = It[z′])∑

c

∑
c′
∑

z

∑
z′
∑

t δ (c = It[z]) δ (c′ = It[z′])
, (5.6)

in which the Dirac delta function δ(c = It[z]) returns 1 only if the label at position

z of image It is c, otherwise it returns zero. Examples in Fig. 5.5 illustrate the likeli-

hood maps p(z|c, c′) between couples of labels, which are computed by marginalizing

over the position variable z′ : p(z|c, c′) =
∑

z′ p(z, z
′|c, c′) =

∑
z′ p(z, z

′, c, c′)/p(c, c′).

Once joint probabilities are computed, the conditional probability p(c|c′;Ri, Rj) is
derived as follows

p(c|c′;Ri, Rj) =
p(c, c′;Ri, Rj)

p(c′;Ri, Rj)
=

∑
z∈Ri

∑
z′∈Rj

p(c, c′, z, z′)∑
c′′
∑

z∈Ri

∑
z′∈Rj

p(c′′, c′, z, z′)
. (5.7)

5.3.4 Spatial Smoothing

Objects are segmented into lots of superpixels and some of them may not be

discriminative enough. When the contextual regularizers cannot help recovering the

true labels of such superpixels, a simple operator such as spatial smoothing may
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(e) p(z|car, building) (f)

p(z|building,window)
(g) p(z|�eld, tree) (h) p(z|building, river)

(i) p(z′|car, building) (j)

p(z′|building,window)
(k) p(z′|�eld, tree) (l) p(z′|building, river)

Figure 5.5 � By observing image examples in the top row, we would like to �nd the

spatial correlation between labels such as car and building, window and building,

tree and �eld, building and river. Shown in the middle and the bottom rows are

the likelihood p(z|c, c′) of some label pairs {c, c′} whose example are illustrated in

the top row. These conditional probabilities are computed by marginalizing one

out of the two position variables z and z′, i.e., p(z|c, c′) =
∑

z′ p(z, z
′|c, c′). The

visualizations of the maps re�ect our belief about the spatial relationship between

those label pairs. For instance, Fig. 5.5(e) shows that car usually appears in the

lower part of the scene ; Fig. 5.5(i) shows that building is likely to appear higher and

above car.
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be useful. The idea of this operator is borrowed from the pixel-based approach for

scene interpretation (for instance [Tighe 2013]) where adjacent pixels are likely to

get similar labels. Given a test image with unlabeled superpixels, we construct an

adjacency matrix S ∈ R(m−`)×(m−`) between superpixels, i.e., Sij = 1 if the under-

lying superpixels are adjacent and Sij = 0 otherwise. Similarly to the smoothness

term (4.3), the spatial smoothing term admits the convex quadratic form

1

4

m∑
i=`+1

m∑
j=`+1

∥∥W′Φi −W′Φj

∥∥2
Sij . (5.8)

In our implementation, we normalize the matrix S ← (Ds)−1/2S(Ds)−1/2 where

Ds = diag(S1(m−`)), thus the corresponding graph Laplacian is Ls = I− S.

5.4 Optimization

Since both (5.1) and (5.5) admit the same mathematical formula, they share

the same objective function and optimization algorithm. Let us denote {Pcc′} the
conditional probability matrices ; the entry [Pcc′ ]ij of every square matrix Pcc′ ∈
R(m−`)×(m−`) is assigned : i) the conditional probability p(c|c′)δ(i ∼ j) if semantic

context is used and ii) p(c|c′;Ri, Rj) if position context is used. In order guarantee

that Pcc′ symmetric (which provides better labeling results), we assign Pcc′ ←
1
2

(
Pcc′ +

(
Pcc′

)′)
. We also denote {Mcc′} the diagonal matrices in which Mcc′ =

diag(Pcc′1). By padding zeros into matrices M and P such that

M̃cc′ =

(
0`×` 0`×(m−`)
0(m−`)×` Mcc′

)
and P̃cc′ =

(
0`×` 0`×(m−`)
0(m−`)×` Pcc′

)
, (5.9)

the block matrices M̃ and P̃ have the same size m×m. The matrix-based formula

of (5.1) and (5.5) admit the same mathematical expression

1

4

K∑
c=1

K∑
c′=1

(
W′

cΦ−W′
c′Φ
)
P̃cc′

(
W′

cΦ−W′
c′Φ
)′
, (5.10)

or equivalently

1

4

K∑
c=1

K∑
c′=1

(
W′

cΦM̃cc′Φ′Wc + W′
c′ΦM̃cc′Φ′Wc′ − 2W′

cΦP̃cc′Φ′W′
c′

)
. (5.11)

Due to the interchangeability between c and c′, (5.11) is equivalent to

1

2

K∑
c=1

K∑
c′=1

(
W′

cΦM̃cc′Φ′Wc −W′
cΦP̃cc′Φ′Wc′

)
. (5.12)
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Combining altogether equations (4.2), (4.3), (5.8) and (5.12) we obtain the opti-

mization problem for scene interpretation

min
B,Φ,W

µ
2‖Φ‖

2
F + γ

2

∑
c,c′

(
W′

cΦM̃cc′Φ′Wc −W′
cΦP̃cc′Φ′Wc′

)
+

+1
2tr

(
W′ (I + Φ (βL + θLs) Φ′) W

)
+ α

2

∥∥∥∥( X

Y

)
−
(

B 0

0 W′

)(
Φ

ΦC

)∥∥∥∥2

F
s.t ‖Bi‖22 = 1, ∀i = 1, . . . , p

,

(5.13)

in which γ is the context coe�cient and θ is the spatial smoothing coe�cient. When-

ever necessary, we further specify γs and γp as the coe�cients of the semantic and

position contexts respectively.

5.4.1 Updating Classi�er and Basis

There is a little change in the update rule for classi�er compared with (3.6).

Since classi�ers Wc's depend on each other, an iterative optimization procedure is

required for W to converges to a stationary solution. Assuming �xed Φ(t) (denoted

simply as Φ) and enforcing the gradient of (5.13) to vanish (with respect to W)

leads to W(t) = Ṽ with Ṽ = lim
ς→ςmax

V(ς) and

V(ς)
c =

(
I + Φ

(
αC + βL + γ

∑
c′

M̃cc′ + θLs

)
Φ′

)−1

·[
αΦCY′c + γ

∑
c′

ΦP̃cc′Φ′V
(ς−1)
c′

] , (5.14)

where V(0) = W(t−1). In order to �nd B, let us assume that Φ(t) and W(t) �xed,

then the following optimization problem

min
B

1
2 ‖X−BΦ‖2F s.t ‖Bi‖22 = 1, i = 1, . . . , p. (5.15)

is solved similarly as presented in Section 3.3.1.

5.4.2 Updating Kernel Map

Considering �xed B(t+1) and W(t+1) (denoted simply as B, W in the remain-

der of this section), and the previous kernel map solution Φ(t), our goal is to �nd

Φ(t+1) by solving (5.13). The optimization problem (5.13) admits a unique solution

Φ(t+1) = Ψ̃ where Ψ̃ = lim
τ→τmax

Ψ(τ) and

Ψ
(τ)
i =

(
µI + αB′B + (αCii + βDii + θDs

ii) WW′ + γ
∑
cc′

[
M̃cc′

]
ii

WcW
′
c′

)−1

·α (B′X + WYC
)

+ WW′Ψ(τ−1)(βA + θS) + γ
∑
c,c′

WcWc′Ψ
(τ−1)P̃cc′


i

(5.16)
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where Ψ(0) = Φ(t−1). The process described in (5.16) allows us to recursively di�use

the kernel maps from the labeled to the unlabeled data, through the neighborhood

system de�ned in the graph {V, E}. The algorithm terminates when either ‖Ψ(τ) −
Ψ(τ−1)‖ ≤ ε or the iterative optimization algorithm reaches tmax iterations.

5.5 Experimental Setup

5.5.1 Dataset

In order to validate the proposed method, we use a standard subset of the La-

belMe database. This subset, known as the SiftFlow dataset, is commonly used since

[Russell 2007a] in order to benchmark scene interpretation methods. The subset con-

tains 2688 images sampled from 8 scene categories : sea, forest, highway, city street,

building, mountain, countryside, and skyscraper. Images within each category are

diversi�ed in locations, atmospheres, illuminations, and viewpoints. Following previ-

ous works, we split the subset into 2488 images for training and the rest 200 images

for testing. In our experiments, images are over-segmented into superpixels using

the graph-based segmentation algorithm [Felzenszwalb 2004]. Every superpixel of

the training images is assigned a unique label based on ground-truth data. Since

a superpixel may partly cover several objects, then its unique label is the most

dominant one.

Although the number of images is approximately equal between scene categories,

the dataset is still imbalanced with respect to the number of object instances ; this is

due to the uneven occurrence frequency of the object classes. For instance, buildings

appear more often than trees in urban scenes. This imbalance is necessary because

popular objects such as building often have more appearance variances than less

popular objects such as tree or sidewalk. However, the side e�ect of data imbalance

in our problem is that the degree of data imbalance is exacerbated due to the region-

based (a.k.a superpixel) representation which is introduced shortly. For labels with

big size objects such as building, sky or sea, the image over-segmentation step creates

several times larger the number of superpixels than the number of object instances ;

the quantities of data with these labels are increased proportionally to their number

of superpixels. The number of superpixels generated from small size objects are not

so large as those of the big size objects. The data imbalance, as a result, becomes

much worse. However, as discussed in Sections 5.3.2 and 5.3.3 and the empirical

results going to be shown, context regularizers can alleviate this imbalance.

5.5.2 Subset Retrieval

Given a test image, we need to retrieve an image subset from the labeled database

such that this subset contains images which are similar to the test one. This subset

is used as a training set for our algorithm. This intermediate step is necessary

because the database may be too large to be �tted into the memory ; in addition,

irrelevant images may be a source of noise. By restricting the size of the training
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set, we obtain several advantages. First, more similar images provide a good source

of labeled superpixels whose semantic content may be more relevant to the test one.

Second, reducing data redundancy clearly saves computational cost.

The subset retrieval step is not new and has been used in [Liu 2011a,

Russell 2007a, Tighe 2013, Eigen 2012a]. We follow the setup of [Tighe 2013] in

which three holistic features � a pyramid of denseSIFT histogram [Lazebnik 2006b],

GIST descriptor [Oliva 2006], and color histogram � are used to retrieve the T most

similar labeled images. For every feature, the labeled images in the database are

sorted in ascending order of the Euclidean distances between them and the test im-

age. The three sorted lists are mixed into a �nal list by choosing from the lists the

minimum rank of every image. The top T ranked images are chosen as the images

in the retrieved subset. In general, there always exists in the retrieved result some

images whose semantic content is not relevant to the test one. These images may be

considered as a source of noise.

Another heuristic proposed by [Singh 2013] is to use label-based features in order

to retrieve training images. This heuristic consists of two steps. In the �rst step, every

training image in the database is labeled by our method in which the training data

is retrieved based on visual features mentioned above. Once all the training images

are labeled, we use this labeling information as the features for the second retrieving

step. By applying a pyramidal grid consisting of three layers 1× 1, 2× 2, 3× 3 into

the labeling results of every image in the dataset, a histogram of label frequency for

every cell of the grid is computed ; concatenating histograms of all the cells give us

a label-localized histogram used in the �ne labeling step. In this second step, image

similarity is computed based on such label histograms. Although the labeling in the

�rst step may not be correct with respect to the semantic content of images, some

background objects such as sky, building and road can also be partly recognized.

And this is an important cue for the second step to retrieve more similar images.

An example comparing the two techniques is illustrated in Fig. 5.6.

5.5.3 Features Extraction and Graph Construction

After retrieving the subset of T similar images, we segment the training

and test images into superpixels using the fast graph-based segmentation algo-

rithm [Felzenszwalb 2004]. Superpixels are represented by a set of 26 visual descrip-

tors [Malisiewicz 2009, Tighe 2010] of 5 feature groups : shape, location, texture &

SIFT, color, and appearance. In particular, the shape group contains information

about the bounding box of the superpixel, relative size and area of the superpixel

with respect to the image. The location group consists of a downsampled image of

the superpixel-masked image and the relative height of the superpixel with respect

to the image. The texture/SIFT group consists of texton and SIFT histograms of

the superpixels as well as its left, right, top, and bottom extents. The color group

consists of color histogram, the means and standard deviations of each color chan-

nel. The appearance group consists of the thumbnail of the image of the superpixel,

the thumbnail of the image masked by the superpixel, and gist descriptor of the
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(a) Test image (b) The subset retrieved using vi-

sual features.

(c) The subset retrieved using pyra-

midal features of labels.

(d) Ground-truth (e) Ground-truth of the visual

features-based subset.

(f) Ground-truth of the label

features-based subset.

Figure 5.6 � The results of retrieving the subset of training data using (b,e) visual-

based and (c,f) label-based features. Given a test image (a), we use it as the query

image in order to retrieve from the image database a subset of images which are

similar to the query one. The quality of the retrieved subset is an important factor

for our algorithm to successfully interpret semantic content of the test image. There

are two ways for the retrieval : (i) based on visual features, (ii) based on label

features of a preliminary labeling step. By comparing the retrieved results between

(e) and (f), it is clear that the second method is more e�ective in retrieving similar

images.

superpixel.

Given m superpixels extracted from (T + 1) images, we obtained 26 sets of

feature vectors {{xji}mi=1}26
j=1. These features are used to construct an adjacency

graph whose vertices represent superpixels and edges represent the visual similarity

between superpixels. The similarity Aab between two superpixels a and b is computed

based on (4.10). The resulting similarity computation is a square matrix A of sizem.

For every row Aa· of matrix A, just k largest values are kept (except diagonal entry

Aaa) and the rest is set to zero. In other word, every superpixel is connected to its k
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most similar superpixels, which are extracted from either one of training images or

the test one. Since A may not be symmetric, we �x this by using A← (A + A′)/2

instead of A.

5.5.4 Evaluation

Similarly to related works, we evaluate the accuracy based on two criteria per-

pixel classi�cation rate and per-class classi�cation rate. The �rst measurement com-

putes the average of how many percent of pixels per image are accurately labeled.

This is the most intuitive measurement because it is closely related to our feeling in

judging how good an image is interpreted. However, the per-pixel rate favors big and

popular objects such as building and sky and ignores errors in rare labels such as

window and sign. The other measurement can overcome such situations ; per-class

rate is not a�ected by the object's size because we compute � for every image �

the average of the percentage of the pixels labeled correctly with respect to every

label. This rate is then averaged over the number of test images. We prefer scene

interpretation systems that obtain high values for both rates.

5.6 Results and Discussions

There are four factors that a�ect the result of our algorithm : the features used

in the subset retrieval step, the size T of the subset, the role of the smoothness

regularizer, and the role of the contextual regularizers. Each of these factors will be

investigated in this section. The rest parameters are �xed as follows : the �delity

coe�cient α = 1, the neighborhood size k = 20, the max numbers of iterations

ςmax = 5, τmax = 20, tmax = 5, and convergence criterion ε = 10−2.

5.6.1 Analysis of Subset Retrieval

As mentioned earlier in this chapter, there are two methods in retrieving similar

training images from the dataset. The �rst one is to use a fusion of pyramid Bag-of-

Words SIFT histogram, color histogram, and GIST descriptor, in order to estimate

the visual similarity between images. The second one is to use label-based features of

the training images, which are preliminarily labeled by a baseline method. According

to Fig. 5.7(a), using the label-based retrieval method may improve the interpretation

results. However, the disadvantage of this method is that labeling errors made by the

preliminary labeling step are kept in the main labeling step. Such erroneous label

features are unrecoverable. Illustrated in Fig. 5.8 are some examples where the label-

based method leads to a better labeling in the three �rst images and the visual-based

method does it better in the next three images. A combination of the two feature

types � label-based and visual-based � may resolve these counter examples.

The quality of the training data depends on not only its similarity to the test

one but also its abundance. More training images means more superpixels ; thus our

algorithm has a richer source of labeled data for the unlabeled superpixels in order to
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(a) Visual-based versus label-based retrieval
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(d) Positional context
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(f) Spatial smoothing

Figure 5.7 � Analyses on : (a) the e�ectiveness of the visual-based and the label-

based retrieval heuristic, (b) the behavior of the smoothness term that di�uses

the labels from the labeled to the unlabeled data, (c-d) how individuals and (e)

combination of contextual regularizers help improve the per-label rate, and (f) how

the spatial smoothing can correct labeling defects.
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56.6(31.1) 89.5(92.1) 64.5(60.0) 90.9(70.6) 94.7(70.6) 77.1(80.6)

85.9(45.8) 98.5(97.6) 81.4(75.2) 82.6(32.8) 62.9(49.1) 28.6(31.5)

Figure 5.8 � Comparison of the methodologies used in the subset retrieval step. 1st

row : test images ; 2nd row : ground-truth ; 3rd row : results with visual-based subset

retrieval ; 4th row : results with label-based subset retrieval. The three �rst columns

shows examples in which the label-based method provides better results ; the rest

columns are the examples where the visual-based method is better. The per-pixel

rate is shown under every result while the per-label rate is shown in bracket.

�nd their good matches. It is particularly true for rare labels. As indicated in Fig. 5.8,

adding more training images helps our algorithm to �x labeling errors caused by the

lack of labeled data. The plot in Fig. 5.7(a) also indicates that by increasing the

subset size T from 20 to 100 the per-pixel rate increases from 76.0% to 77.1% and

the per-label rate increases from 22.1% to 27.0%. It seems that rare labels bene�t

most from the abundance of training images. Related examples in Fig. 5.8 with the

plot in Fig. 5.7(a) allow us to con�rm this fact. However, performance slightly drops

as T increases up to 140. This may be due to the fact that images ranked from 100th

to 140th may be pretty irrelevant to the test one ; as a consequence, superpixels of

those images are rather noisy than informative. The optimal choice of T may not

be �xed but changes from one database to another.
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83.5(26.5) 67.2(33.2) 80.2(36.5) 92.2(71.1) 74.4(32.5) 75.1(67.8)

86.7(42.6) 77.9(62.8) 80.6(37.6) 84.2(67.5) 73.7(32.1) 96.1(95.2)

88.4(47.9) 90.42(70.1) 85.1(48.6) 88.1(70.1) 72.7(31.7) 96.9(96.2)

86.9(36.0) 98.1(89.0) 85.5(50.6) 79.6(66.3) 77.6(51.2) 98.4(98.2)

Figure 5.9 � Comparison of the results produced by our method with di�erent

values of subset size T . 1st row : test images ; 2nd row : ground-truth ; 3rd row :

results with T = 20 ; 4th row : results with T = 60 ; 5th row : results with T = 100 ;

6th row : results with T = 140. In almost of the cases, adding more training images

leads to improved labellings. The only exception is at the example in the 4th column.

The labeling results are improved in half of the examples (columns 2nd, 5th, 6th) when

increasing T from 100 to 140.
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5.6.2 Analysis of the Smoothness Regularizer

As shown in Chapter 3, the smoothness regularizer is responsible for label dif-

fusion. The goodness of the labeling also depends on this regularizer, which in turn

depends on the graph Laplacian L and the smoothness coe�cient β. Given L �xed,

an appropriate value of β, i.e., β = 10−2, can boost classi�cation performance ; how-

ever, larger values of β, i.e., β = 1, degrades the performance because the smoothness

regularizer will favor more frequent labels than rare ones. As shown in Fig. 5.7(b)

and Table. 5.1 the optimal value of β is �xed at β = 10−2 whose per-pixel and the

per-label rates are 77.1% and 27.0% respectively. This optimal value of β is kept for

subsequent experiments.

5.6.3 Analysis of the Semantic Context

Unlabeled superpixels extracted from the test image must have certain con-

textual relationships. Semantic context aims to exploit prior information of such

relationships from the database and apply it into the test image. In particular, our

semantic regularizer focuses on invoking co-occurrences between adjacent objects.

Based on the likelihood table computed in Section 5.3.2, we investigate how the

overall performance is improved with the presence of semantic regularization. The

semantic context with γ = 10−4 increases the per-label rate from 27.0% to 28.3%. A

larger value of γ, i.e., γ = 10−3, increases the per-label rate to 28.9% while decreases

the per-pixel rate from 77.2% to 76.9%. This rate drastically drops as γ increases

further (see Fig. 5.7(c)). Some examples shown in Fig 5.10 demonstrate how the

presence of the semantic context helps correcting false predictions (the 1st, 2nd, 3rd,

and 6th columns of the 5th row). In order to understand the working mechanism of

the semantic regularizer, it is useful to observe in Fig. 5.11(a) the changes of classi-

�cation responses as the semantic context is involved more into the interpretation

process ; by increasing the coe�cient γ from 10−5 to 10−4 and 10−3, the labeling

result is improved (see how the mislabeling of tree, sky, and pole is corrected in

Fig. 5.11(a)).

5.6.4 Analysis of the Position Context

Having the same goal as of the semantic regularizer but exploiting contextual in-

formation in a di�erent way, the position regularizer handles label co-occurrences in

terms of their absolute positions in the test image. After estimating the co-occurrence

statistics between every possible label pair and storing them in the likelihood ma-

trices {Pcc′}, we test the e�ect of the position context with several values of the

coe�cient γ. From Fig. 5.7(d) we observe that the per-label and per-pixel rates are

improved up to 29.1% and 77% when γ = 10−5. Compared with the semantic regu-

larizer, the position regularizer is slightly better at the per-label rate (29.1% versus

28.9%) but slightly worse at the per-pixel rate (77% versus 77.2%). A noticeable

weakness of the position context is the in�exible grid-based model. For example,

the horizon line may be positioned from very high (in some images) to very low
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72.2(52.7) 84.8(45.2) 80.9(46.8) 84.0(54.5) 87.8(60.6) 86.2(55.4)

92.0(75.9) 84.8(45.2) 79.8(46.4) 84.3(56.4) 92.0(69.7) 85.8(55.2)

92.3(73.0) 93.0(63.0) 83.7(54.6) 84.0(54.5) 87.8(60.6) 90.1(61.1)

92.9(77.8) 92.9(63.0) 83.7(54.6) 86.5(61.8) 92.2(79.2) 94.0(63.0)

Figure 5.10 � Examples comparing the e�ects of context regularization. 1st row :

Test images ; 2nd row : Ground-truths ; 3rd row : the basic results ; 4th row : with

position context ; 5th row : with semantic context ; 6th row : with both position and

semantic contexts and spatial smoothing. The two context regularizers help each

other : some false predictions are �xed by either one of the two regularizers. When

combined together they provide better interpretation results compared to individual

contexts.
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(in other images). In normal cases where the horizon line is located at the middle

of the image, the position context is useful (see the 1st and 5th columns of the 4th

row in Fig. 5.10). This may explain why the position context is slightly worse than

the semantic one in terms of the per-pixel rate. For the per-label rate, the position

context is better than the semantic one, especially for the object labels whose posi-

tions are often �xed, for example sun, moon, pole, and sidewalk (compare labeling

results between Fig. 5.11(a) and Fig. 5.11(b)). Di�erences between the two contexts

are further depicted in Fig. 5.12.

5.6.5 Analysis of the Combination of Contexts

We wonder whether a combination of semantic and position contexts will im-

prove further the performance. In order to test this, the context regularizer (5.13)

is duplicated into two versions whose coe�cients γs and γp are used to emphasize

the importance of the semantic and position regularizers respectively. Update rules

for the optimization algorithm are modi�ed in the same way. While the semantic

regularizer is good at capturing local relationships, the position regularizer is likely

to capture semantic layout at the image level ; we expect that the two factors are

complementary. Fig. 5.7(e) shows empirical evidences that support our expectation.

We test with two settings of γs (10−3 and 10−4 correspond to red and blue dashed

lines in Fig. refchap4 :�g :analyzecombine) and for each of the value of γs we steadily

increase the value of γp from 10−7 to 10−4. We observe that both of the settings

obtain their peaks with γp = 10−6. That value of γp makes the position regularizer

obtaining its best performance. Compared with the improvements made by the in-

dividual context regularizers (the x dots in Figs. 5.7(d) and 5.7(c)), the combined

context bene�ts both per-pixel and per-class rates.

5.6.6 Analysis of the Spatial Smoothing

As mentioned in Section 5.3.4, spatial smoothing addresses the fact that adja-

cent superpixels of an image are likely to have similar labels. The smoothness term

(4.3) associates superpixels by edges if they are visually similar ; however, it may

not guarantee that adjacent superpixels of the same object in the test image are

connected. That is why a spatial smoothing term is necessary. We test this term

with three settings : semantic context, position context, and the combined context.

For the position context with γp = 10−5 (γs is set to zero), the spatial smoothing

coe�cient helps increasing slightly per-label rate but with a small degradation of

per-pixel rate (see the red dashed line in Fig. 5.10).

Similarly for the semantic context (γs = 10−3, γp = 0), the per-label rate is

improved from 28.9% to 30.5% as we introduce the spatial smoothing term at θ =

10−3 ; however, its per-pixel rate is slightly degraded from 76.9% to 76.6% (the blue

dashed line in Fig. 5.7(f)). Fortunately, the per-pixel and per-label rates recover to

76.8% and 30.5% respectively if we continue to increase θ up to θ = 10−3. Increasing

more on the spatial smoothing term, for example θ = 10−2, does not gain but reduces
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(a) The prediction maps conveying how semantic context correct false predictions. By increasing

the coe�cient γ to an appropriate value, i.e., γ = 10−4, the labeling responses are improved

(see the contrast improvements in some prediction maps when increasing γ from 10−5 to 10−3).

For example, tree objects become more visible with γ = 10−4 than with γ = 10−5 ; clouds in

the sky, which is misled with road when γ = 10−5, are now labeled correctly with γ = 10−4 or

γ = 10−3 ; similarly, the lane marker at the center of the road, which are misled with building,

are partly corrected with the semantic context ; interestingly, pole objects emerge clearly from the

background when increasing γ.

(b) The e�ect of the position context is generally di�erent from the semantic context. Because

of the grid-based co-occurrence model, they are visible in the maps of road and sky horizon lines

dividing the image into two halves ; above the line is the sky and below the line is the road. In fact

the position context is useful in this case ; and in general, it is useful for landscape scenes.Notice

how the rare label pole is prioritized as γ is increased.

Figure 5.11 � How the use of contextual regularizers a�ects �nal predictions. The

prediction maps of six labels (tree, road, sky, building, sidewalk, and pole) are shown

for every value of the contextual coe�cient γ (vertical axes). Prediction maps in (a)

are the results of the semantic context while the maps in (b) are the results of the

position context.
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(a) By increasing γ, more window labels appear in the �nal prediction. Notice that there are black

holes (which are strong responses of the label building) in the prediction maps of window, sidewalk,

road, and door. However, just the window superpixels, which are adjacent to those black holes, are

emphasized. The support from building for window is evenly clear as γ is increased.

(b) With γ = 10−6, the response map of sky is stronger at the top (lighter color), while that of

window is stronger at the image center and those of sidewalk, road, and door maps are at the

bottom. As we increase the value of γ, some door labels appear in the �nal prediction. This does

not happen with the semantic context (see �gure (a)).

Figure 5.12 � Compare the di�erence between semantic and position regulariza-

tions.

the per-label rate.

With the combined context con�guration, spatial smoothness coe�cient θ =

10−3 leads to the improvement of both per-pixel and per-label rates from 76.5% to

77% and from 30.9% to 31.2% respectively. This is also the highest performance

obtained by our method with the SiftFlow dataset (see Table 5.1).
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Per-pixel Per-label

R
el
at
ed

w
or
k
s [Russell 2007a] 76.7 -

[Tighe 2010] 76.9 29.4

[Tighe 2013] 77.0 30.1

[Farabet 2012] 78.5 29.6

[Eigen 2012b] 77.1 32.5

[Singh 2013] 79.2 33.8

[Myeong 2012] 77.1 32.3

O
u
r
m
et
h
o
d

no context 77.1 27.0

semantic 77.2 28.3

position 77.0 29.1

smoothed semantic 77.1 28.8

smoothed position 77.0 29.1

semantic + position 77.3 29.0

smoothed semantic + position 77.0 31.2

Table 5.1 � Comparison between our method (best con�gurations) and related

works.

5.6.7 Comparison with Related Works

Except the scene alignment work of [Russell 2007a], the other methods in the

Table 5.1 adopt a similar framework of scene interpretation. A test image is used

to query a small set of labeled images ; this set is the training data for a machine

learning algorithm such as MRF or CRF. Label information is propagated � via

the inference process of the learning algorithm � from the training data to the test

ones, which are pixels or superpixels of the test image. Although our method has a

di�erent methodology perspective, the performance of our method on the SiftFlow

dataset is e�ective and is among the state of the art. In particular, our method is

better compared to scene alignment [Russell 2007a] and SuperParsing [Tighe 2010,

Tighe 2013]. The success of our method is due to our context regularizers and the

label-based subset retrieval heuristic which is adopted from [Singh 2013]. The former

factor helps improving the per-label rate from 27% to 31.2% ; the latter factor boosts

the per-pixel rate from 75% to 77.1% and the per-label rate from 26% to 27%.

Compared to [Farabet 2012] where they use a convolutional network for feature

learning, our method is better in terms of the per-label rate but worse in terms

of the per-pixel rate. Compared to [Eigen 2012b] and [Myeong 2012], our method

is slightly inferior in terms of the per-label rate. According to [Eigen 2012b], they

adopt distance learning in order to reweight the importance of visual descriptors with

respect to every object label ; visual descriptors are not reweighted in our method.

According to [Myeong 2012], they use a link prediction method in data mining in

order to infer contextual links between superpixels in the test image ; although their

method turns out to be more e�ective than ours, it is computationally expensive.
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5.7 Summary

In this chapter we introduced extensions of our transductive kernel learning

method for scene interpretation. Based on the multi-class formulation developed in

Chapter 4, we incrementally design regularizers that account for contextual rela-

tionships between objects in scene. Two regularizers are introduced which exploit

the co-occurrence between object labels in order to obtain a more consistent label-

ing of test images. Based on the subset retrieval step introduced by [Tighe 2010]

and improved in [Singh 2013], our e�cient optimization algorithm achieves compet-

itive results with the SiftFlow dataset. Good empirical results demonstrate that our

method e�ectively tackles the scene interpretation problem.



Chapitre 6

Transductive Subspace Learning

for Image Search

In this chapter we introduce a novel transductive approach in order to learn

semantic low-dimensional representations for images. Our goal is to use this repre-

sentation for query design, interactive image search, semantic-driven image repre-

sentation, and ranking. This chapter is our third main contribution of the thesis.

Recall that with transductive kernel map learning in Chapter 4, we have applied

it to image annotation, which is an important building block for keyword-based

image search. So in this new chapter, the image search problem is revisited again

but solved using a di�erent method. The idea of our method is to learn a low-

dimensional embedding from an input space to a well-de�ned semantic space. Our

method is supported by the fact that an interactive and semantic-based querying

tool is more e�ective and e�cient for users to express their mental queries. Fur-

thermore, our method is scalable and useful in situations where annotated data is

scarce. Extensive empirical results with satellite images and generic scene images

demonstrate competitive performance of our method with respect to state-of-the-art.

Parts of this chapter were mentioned in the followings papers :

1. Phong Vo, Hichem Sahbi, Semantic Subspace Learning for Mental

Search in Satellite Image, IGARSS, Australia, 2013.

2. Phong Vo, Hichem Sahbi, Spacious : An Interactive Mental Search

Interface, ACM SIGIR, Ireland, 2013.
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6.1 Introduction

Social networks and Web 2.0 have opened tremendous opportunities as well

as challenges for multimedia creation and sharing. When more and more people

use Internet, information search is very demanding. An early form of information

search is text search. After a time, it has been commercialized as search engines

such as Yahoo and Alta Vista. Google and Bing are nowadays masters in text

search technology. The success story of text search, however, has not yet been fully

transposed to multimedia data. This is a very challenging problem for machine

learning and computer vision methods because it is still di�cult to build intelligent

machines in order to comprehend visual data.

In seeking for intelligent image search algorithms, transferring techniques of text

search into visual data is a mainstream. The principle is straightforward : images

must be annotated by text, that is to associate content of an image to corresponding

keywords. Once annotated, images are ready to be retrieved as if they were text.

The key advantage of this approach lies in the conciseness and diversity of natural

languages. Its disadvantage, however, is threefold. First, a user may �nd it di�cult

to use text in order to express his mental picture. Some concepts are described

better with visual content than by text. Second, representing retrieved results is not

always intuitive. In particular, search engines such as Google and Bing simply list

retrieved images in �at web pages ; this representation is inappropriate to multi-

dimensional visual data. Third, multimedia data nowadays are too massive to be

annotated manually and current automatic image annotation approaches are not

su�ciently mature. Hence, we are searching for alternatives in this work.

Query-by-example [Heesch 2008, Rubner 2001, Kovashka 2012, Ferecatu 2007] is

a pioneer approach in using visual example for image retrieval. Its idea is to replace

keyword-based queries with some images that are similar to the mental picture

of the user. With this query approach, annotation is not necessary ; the system

uses a proxy image as a visual pattern to search for other images in the database ;

the most similar ones are the retrieved results (see Fig. 6.1). Image matching is

done by comparing images using low-level descriptors such as color, texture, and

shape. However, query-by-example lacks of high-level semantics. Since current vision

algorithms are not be able to generalize low-level features to abstract concepts, low-

level features alone cannot disambiguate images including visual objects with strong

variability. Furthermore, query images may not be easy to �nd. Thus choosing an

appropriate example is not a trivial task. In other cases, the mental picture is not

well described by those examples.

Relevance feedback [Zhou 2003c, Ferecatu 2007, Gosselin 2008] tries to solve this

problem using knowledge obtained from the user. It is an iterative querying process

in which examples similar to the user's mental target are chosen at every iteration.

In order to give feedbacks, the user must select a few representative images, which

are examples used for the next iteration ; these representatives must contain both

positive and negative samples. Positive samples mean that the user wants to see

more images like these in the next round ; negative samples mean that he does not
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Figure 6.1 � Query-by-example requires from the user an image example which is

similar to his mental target. This example is then used to match against images in

the database ; the most similar ones are used as the retrieved result. In the example

above, the mental target is to �nd �Vauban fortress.� Since the user does not have

any fortress image, he uses another one which is marginally similar to his target.

The retrieved result consists of both true positives and false alarms.

want to see such images anymore. These images correspond to user's feedback (see

Fig. 6.2). The feedback process may not be stopped until the user �nds his image

of interest, otherwise the user cancels and restarts the search process.

The advantage of relevance feedback is due to not only the use of many examples

but also the selection of those examples. Since the user has to judge the relevance

of those examples before choosing them as representatives, semantics is implicitly

induced into the search process. This depends on the goodness of image matching

techniques and also examples of earlier feedbacks. However, the process may spend

many iterations before reaching the target.

An alternative, known as query-by-semantics, maps images from their input

space to a semantic space. We are interested in a family of machine learning methods,

for example [Siddiquie 2011, Russakovsky 2010b, Kumar 2009], that uses ranking

approaches in order to de�ne such a mapping. These learning to rank methods can

be classi�ed into two approaches :

� The �rst one [Joachims 2002b, Siddiquie 2011] applies one-vs-rest classi�ers

in order to learn ranking functions. For every semantic, a classi�er such as

SVM-rank [Joachims 2002b] is learned from labeled data of image pairs. The

learning process takes into account relative comparison of semantic abundance
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Figure 6.2 � Since a single example may not be enough to characterize the mental

picture of the user, the solution of relevance feedback is to let the user re�ne his

mental query based on interactive feedback mechanism. From the retrieved result at

every iteration, the user gives extra image examples which are annotated as relevant

or irrelevant to the target image. In the example above, three examples are used to

give feedbacks at every iteration. The ones similar to the mental target are marked

as green, otherwise marked as red. At the fourth iteration, more correct images

appear.

between two images in a pair. Learned ranking functions associate images to

relevance scores such that the scores between two images of a training pair

must respect their relative semantic abundances. If every ranking function is

considered as a basis, a full span of the basis de�nes a semantic space and this

space is interpretable to the user.

� The second approach is based on manifold assumption, which was introduced

in Chapter 2. Its idea is to use smoothness assumption in order to enforce rank-

ing functions to preserve the orders of the training data [Liu 2011b, Cai 2007,

Lin 2005, Zhou 2003b, He 2004].

In general, ranking methods somewhat relate to automatic image annotation due

to their similar goals in assigning high-level features to images. However, automatic

image annotation aims to tag as many as possible visual objects present into an

images ; image ranking focuses on ranking images based on amounts of semantic

abundances. Once an image is ranked, we can measure how much or less a semantic

appears in that image ; furthermore it can be compared to another ranked image.

This is bene�cial to the image search problem because we can use simple comparison
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(a) KernelPCA (b) t-SNE (c) Laplacian Eigenmaps

Figure 6.3 � The visualizations of satellite image patches using nonlinear dimen-

sionality reduction techniques. Despite of being able to discover the dynamic of data

(gradual changes of visual appearances from urban to sea), those techniques fail to

interpret the semantic of dynamic with respect to subspace coordinates. In other

word, the dimensions of the subspace are not necessarily associated with any seman-

tics ; equivalently, coordinate values of a point in the target subspace cannot tell us

anything about which semantics are more likely to appear at that position.

operators for querying.

The comparative advantage of query-by-semantics with respect to query-by-

example is that the semantic-based representation is more interpretable. The rest

problem is how to design an intuitive querying interface. Some works [Kumar 2009,

Siddiquie 2011] propose to use keywords (query-by-text) in order to search for se-

mantic content. We do not adopt this approach because text-based methods are

restrictive. For instance, it is di�cult when using keywords to name abstract visual

concepts or express the amount of semantic abundance of targeted images. Our goal

therefore is to �nd an alternative which helps expressing semantics into queries.

Inspired by the problem of selecting initial examples for a query, we wonder how

to quickly spot and pick them from an image database. This is novel because cur-

rent methods just focus on extracting representatives of database [Fauqueur 2006,

Ferecatu 2007]. For databases whose sizes range from small to moderate, such meth-

ods are su�cient, i.e., using sampling techniques to obtain representatives. At

larger scales, however, sampling techniques are not e�ective. We think that this

issue can be solved using data visualization techniques [Rubner 2001, Heesch 2008,

Schaefer 2010] whose core parts are based on nonlinear dimensionality reduction

algorithms (ISOMAP [Tenenbaum 2000], Locally Linear Embedding [Roweis 2000],

Laplacian Eigenmaps [Belkin 2001], etc.). Via transforming the data from a high-

dimensional space to a low-dimensional space, data visualization techniques can help

the user to perceive an overview of the database. Thus the user can build his cogni-

tive map of the dynamic of the data which serves as a mean for his mental picture to

be expressed [Spence 1999]. Based on such a cognitive map, the user interacts with

a visualization system and seeks for his mental target without requiring any query

example. The main challenge of dimensionality reduction methods, however, is the
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Figure 6.4 � The processing pipeline of mental querying : (i) the user has a mental

target, says a coastal image ; (ii) after observing the visualization of the database,

the user knows how to interpret his mental target as a combination of the seman-

tics available in the database ; (iii) based on the user's judgement on the amount

of semantic abundances, the user will examine the corresponding location in the se-

mantic space. Repeating the process several times, and combining with systematic

navigation, the user is expected to �nd his target.

lack of semantic as these methods are unsupervised. As a result, the low-dimensional

representation is not associated to any semantic, which makes the search process

di�cult to follow (see Fig. 6.3).

As the third contribution, we introduce a novel algorithm for semantic subspace

learning, which learns a semantic representation of the data. The algorithm is de-

signed using a novel principle, that unmixes semantics from images and maps them

from an initial ambient space (related to low level visual features including texture,

color and shape) to an output space spanned by a well de�ned semantic basis. An

arbitrary image is given a unique position in the new representation ; the coordinates

of this position will mention the amount of semantic abundances contained in the im-

age. As will be shown, we cast this problem as convex quadratic programming (QP)

optimization, constrained in a simplex spanned by few pure semantic endmembers.

The advantages of the proposed approach are threefold ; �rstly, it signi�cantly re-

duces the dimensionality of the input space (which is di�cult to explore/visualize) ;

secondly, it learns features which are semantically interpretable, i.e., their values

are highly correlated with the de�ned semantics ; thirdly, it provides global access

to the data in contrast to relevance feedback where user judgment is limited to the

retrieved results. Thereby, searching for a mental target, with our model, simply

reduces to scanning and targeting data according to their coordinates in the learned

semantic subspace.

The rest of this chapter is organized as follows. Section 6.2 presents semantic sub-

space learning. The next Section 6.3 explains how to optimize the proposed criterion
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for small and large-scale databases. Next in Section 6.4 are our experiments of data

visualization and search for satellite and generic images. A software implementing

our idea is presented in Section 6.5. Quantitative evaluations of image ranking and

retrieval with relevance feedback are investigated in Section 6.6. We conclude the

chapter in Section 6.7.

6.2 Method

6.2.1 Mathematical notation

We consider the following notation : Ak (resp. Ak·) denotes the kth column

(resp. row) of a given matrix A while Aki denotes the k
th entry of its ith column.

In particular, In denotes an identity matrix of size n× n ; 1n×n and 0n×m denotes

all one's and all zero's matrices respectively. We also denote A′ as transpose of A

and A � 0 if Aij ≥ 0, ∀i, j. Consider a ⊆ {1, . . . ,m}, b ⊆ {1, . . . , n}, the sub-

matrix of A ∈ Rn×m containing entries Aij in which i ∈ a and j ∈ b is denoted

as [A]ab. Two matrices A ∈ Rn×m and B ∈ Rp×q are vertically stacked as a block

matrix [A; B] ∈ R(n+p)×m i�m = q and horizontally concatenated as a block matrix

[A B] ∈ Rn×(m+q) i� n = p. The trace tr(A) of the square matrix A equals to the

sum of diagonal elements of A. For vector notations, we denote diag(a) = A as a

diagonal matrix of size n × n in which its main diagonal entries equal to those of

the vector a ∈ Rn; 1n and 0n denotes all one's and all zero's vectors respectively.

Other notations if necessary will be de�ned later.

6.2.2 Semantic Subspace Learning

We are interested in learning a particular low dimensional subspace. The underlying

assumption is : the probability distribution generating the input data admits a

density with respect to the canonical measure on a sub-manifold of the Euclidean

input space. The goal of our method is to de�ne a mapping that preserves the local

distances while capturing a global topology. The latter is de�ned by the dynamic of

variation of data (through di�erent intrinsic dimensions) which should be consistent

with the semantics assigned to these dimensions.

Let X ∈ RD×m be a matrix of m input data points with feature vectors Xi's

and Y ∈ [0, 1]K×m the underlying membership matrix of m data points whose `

�rst elements are labeled ; here K corresponds to the number of semantics. A given

entry Yki of a membership vector Yi in which i ≤ ` is strictly positive i� the kth

semantic is present into Xi ; since the rest (m− `) data points are unlabeled, their

membership vectors yi's equal zero. When only one entry of Yi is positive and also

equal to 1 and the rest equals zero, then Yi is referred to as endmember. Notice that,

per construction, the endmembers of di�erent semantics as well as the underlying

semantics should be mutually uncorrelated. Our algorithm is proposed based on

the endmember condition which states that the training data (�rst ` data points)

must be endmembers. Later in this chapter we will show that the satisfaction of this
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Figure 6.5 � Our proposed method learns an embedding of the data which resides

in a subspace whose coordinates are associated with a set of prede�ned semantics.

In the �gure above, our subspace is in R3 whose axes are vegetation, building,

water. Illustrated at the corresponding axes are the training examples which we call

endmembers in our context.

condition depends on databases and that the condition is not required to be strictly

satis�ed.

Our goal is to learn an embedding Φ ∈ [0, 1]K×m which is in fact the membership

matrix of both ` labeled and (m − `) unlabeled data. Each entry Φki corresponds

to a mapping of Xi into the kth semantic dimension ; a high value of Φki indicates

that the kth semantic is present into Xi with a high probability and vice-versa. In

order to �nd Φ, we introduce the following optimization problem

min
Φ∈S

1
2tr (ΦLΦ′)

s.t ΦC = Y
(6.1)

In the above objective function, elements in Φ are taken from a unit (K − 1)-

simplex, that belongs to the positive orthant, and spanned by the canonical basis of

RK , i.e., S = {Φ ∈ RK×m, Φ � 0, Φ′1K = 1m}. This simplex condition Φ ∈ S is

essential ; given an image, this model measures the abundance of each semantic into

that image so these abundances should be positive and their sum equal to 1. For

instance, if a photo contains more green space (�eld, grass, tree), then the image area

for other semantics such as building, street, sky, must be reduced proportionally.

The only term in (6.1) is a regularizer that ensures similar embedding for neigh-



6.3. Optimization 115

boring data in X

1
2tr (ΦLΦ′) , 1

2tr (ΦDΦ′)− 1
2tr (ΦWΦ′)

=
m∑
i=1
‖Φi‖2 Dii −

m∑
i,j=1

Φ′iΦjWij

=
m∑

i,j=1
‖Φi −Φj‖2 Wij

(6.2)

where W ∈ Rm×m is a symmetric similarity matrix and L the normalized graph

Laplacian [Chung 1997]. The equivalence between L and W is de�ned as L = D−
W where D = diag(W1m). In our work, we use the normalized version of graph

Laplacian, in which the a�nity matrix W is normalized such that the sum of edge

weights of a vertex is equal to 1, i.e., L← Im−D−1/2WD−1/2. The similarity Wij

between two feature vectors Xi and Xj is computed based on the Gaussian RBF

function considering the k-nearest neighbors set Ni of Xi,

Wij =

exp
(
−‖Xi−Xj‖22

σ2

)
i� j ∈ Ni

0 otherwise
(6.3)

in which σ =
∑

ij ‖Xi −Xj‖22 /(km) is the average distance between nodes of the

graph. The optimization will stress more on the smoothness between similar patches

(signi�cant weight Wij 's), while has no e�ect with unconnected patches. If two

points are close to each other in the embedded space, they must be nearby to each

other in the embedding space. In other word, if two patches are visually similar to

each other, i.e., the Euclidean distance between two feature vectors is small, then

they should be placed closely in the semantic subspace (see Fig. 6.6). We expect to

maintain a smooth geometrical structure of the data in the semantic space.

The constraint ΦC = Y, where C = [I`; 0(m−`)×`], guarantees that the embed-

ding {Φ}i of endmembers coincides with the vertices of the simplex.

6.3 Optimization

Our formulation in (6.1) is a constrained quadratic programming problem. We con-

vert it to the canonical form by vectorizing Φ as follows

min
α�0

1
2α
′Hα

s.t Aα = 1(m−`)
Bα = ξ

(6.4)

in which α = vec (Φ), ξ = vec (Y), and vec(·) denotes an operator that vectorizes

a given matrix by concatenating its columns. Through the use of the Kronecker

tensor product ⊗, the matrix H = L ⊗ IK is still positive (semi-)de�nite. Simplex

constraints and membership constraints in (6.4) are transformed to Aα = 1(m−`)
and Bα = ξ in which A =

[
0(m−`)×` I(m−`)

]
⊗ 1′K and B = C′ ⊗ IK . The opti-

mization problem (6.4) is convex and admits a global solution α∗. Any generic QP
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Figure 6.6 � Based on the k-nearest neighbors graph constructed from the data,

the topology of the data is preserved by maintaining neighboring system from the

embedded to the embedding space. The �gure above illustrates the graph of satellite

image patches.

solver is enough to solve this problem in small scale and an example with toy data

is shown in Fig. 6.7.

6.3.1 Large-Scale Optimization

Optimizing (6.4) is prohibitively expensive when the data scales up and the

optimization problem includes a mix of equality and inequality constraints. In order

to develop an e�cient and e�ective large-scale optimization algorithm, the original

problem must be divided into subproblems which are easy to solve. We present in

the following two such algorithms.

6.3.1.1 Chunking

This algorithm treats the embedding Φ ∈ RK×m as K ×m scalar variables and

stochastic optimization is used to approximate the solution. The pseudo code of the

algorithm is listed in Algorithm 3. At every iteration, a subset of variables are chun-

ked and solved by (6.5), which is the chunking version of (6.4). These subproblems

are also convex because the square submatrices H̃ are positive semide�nite. As a

result, the optimization technique used to solve (6.1) can be applied to solve (6.5).

The chunking algorithm is also an instance of alternating minimization. The

chunked variables are �active� variables while the rest are �inactive� ones. Via opti-
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Figure 6.7 � A toy dataset consists of 1,000 points which are randomly sampled

from a 3D RGB cube. The semantic space is de�ned by three semantics whose

endmember examples are red [1 0 0]′, green [0 1 0]′ and blue [0 0 1]′. The embedding

result reveals the dynamic of the data (progressive changes of colors) with respect

to the three axes.

mizing (6.5) with respect to the active ones while keeping the inactive ones �xed,

a smooth representation is achieved step by step. The alternating minimization

asymptotically converges to the global solution as if using exact optimization al-

gorithm (6.1). In practice, the optimization terminates when there is no signi�cant

change detected in Φ. Notice that active variables α̃ = vec (Φba) must be jointly

optimized in order to guarantee the simplex condition in (6.1). If one updates Φua

and Φva separately, then this condition cannot be satis�ed. A counter example with

toy data in Fig. 6.9 shows the geometrical explanation for this condition of joint

optimization.

6.3.1.2 Simplex Projection

An alternative solution is to uncouple the two constraints in (6.1) into two sub-

problems. The �rst one minimizes the smoothness term with respect to the equality

constraints of the labeled data ; the second one projects the optimum of the �rst

subproblem onto the unit simplex, which belongs the positive orthant and the L1

ball. In this way, the �rst subproblem can be solved in large scale using exact op-

timization algorithms ; the second subproblem is a low-complexity projection of a

variable into a convex set. Mathematical details of the solution is in the following.

Let us introduce an auxiliary variable Ψ and an approximation term between Ψ

and Φ, (6.4) becomes

min
Φ∈RK×m;Ψ∈S

1
2tr (ΦLΦ′) + γ

2 ‖Ψ−Φ‖2F
s.t ΦC = Y

(6.7)
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Algorithm 3 Chunking optimization algorithm

Input graph Laplacian L and label matrix Y whose ` �rst columns are endmembers.

Output Learned semantic maps Φ∗.

Set Φ(0) = 1
K 1K × 1′m and t← 0

Repeat

1. Pick randomly two indices b = {u, v} ∈ {1, . . . ,K} such that u 6= v.

2. Pick randomly indices a ⊆ {1, . . . ,m} s.t |a| � |ā| in which ā = {1, . . . ,m}\a ;
for convenience let us denote ă = a\{1, . . . , `} as the set containing non-

endmember indices in a, and â = a ∩ {1, . . . , `} as the set containing

endmember indices in a.

3. Let m = |a|, m′ = |ă| and α̃ = vec
(
Φ

(t)
ba

)
.

4. Solve the following QP

argmin
α̃�0

1
2α̃
′H̃α̃ + β̃

′
α̃

s.t Ãα̃ = 1m′ −
∑
i/∈b

Φ
(t)
iă

B̃α̃ = ξ̃

, (6.5)

H̃ = Laa ⊗ I2, ξ̃ = vec(Ybâ), β̃ = vec
(
Φ

(t)
bāLāa

)
, Ã = [Im′ 0m′×(m−m′)]⊗ 1′2,

B̃ = (Caâ)
′ ⊗ I2.

5. Update

vec
(
Φ

(t+1)
ba

)
← α̃∗

Φ
(t+1)
bā ← Φ

(t)
bā

(6.6)

6. Φ∗ ← Φ(t+1)

Until
∥∥Φ(t+1) −Φ(t)

∥∥2

F
≤ ε

in which γ controls the amount of di�erence between Φ and Ψ. Again, the above

formulation is nonconvex with respect to both Φ and Ψ but convex with respect to

one out of the two given that the other is �xed. If alternating minimization is applied

to (6.7), we obtain two subproblems in which (6.8), as a function of Φ, seeks for a

smooth embedding and (6.9), as a function of Ψ, enforces simplex constraint. The

complete algorithm is listed in Algorithm 4 where details of every step is presented

below.
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

φ11 φ12 φ13 · · · φ1(m−1) φ1n

φ21 φ22 φ23 · · · φ2(m−1) φ2n

φ31 φ32 φ33 · · · φ3(m−1) φ3n
...

...
...

...
...

φk1 φk2 φk3 · · · φk(m−1) φkn
...

...
...

...
...

φl1 φl2 φl3 · · · φl(m−1) φln
...

...
...

...
...

φK1 φK2 φK3 · · · φK(m−1) φKm


99K Φba =

(
φk2 φk3 φkm
φl2 φl3 φlm

)

Figure 6.8 � According to the chunking approach, at every iteration, our algorithm

randomly pick two row indices b = {k, l} and few column indices a ⊂ {1, . . . , n} ;
according to the alternating minimization, the submatrix Φba as active variables

while the rest is �xed.

Updating Φ Given Ψ �xed, minimizing (6.7) with respect to Φ so that we get :

min
Φ

1
2tr (Φ (L + γI) Φ′)− γtr (Ψ′Φ)

s.t ΦC = Y
. (6.8)

The new subproblem (6.8) no longer includes simultaneously inequality and equality

constraints and this reduces the complexity especially for large-scale problems. In

our experiment, we solve (6.8) using Matlab Optimization toolbox 1.

Updating Ψ Given Φ, minimizing (6.7) with respect to Ψ so that we get

min
Ψ∈S

1
2 ‖Ψ−Φ‖2F . (6.9)

The above equation corresponds to m Euclidean projections of vector Φi's onto the

convex L1 ball in RK in which every projection corresponds to

min
v∈∆

1
2 ‖v − u‖22 , (6.10)

where v must be in the convex set ∆ = {v ∈ RK |vi ≥ 0,
∑

i vi = 1} while u

is in RK . Here u and v substitute for columns of Φ and Ψ respectively. Based

on the simplex projection algorithms proposed in [Kyrillidis 2012, Duchi 2008], we

apply them in order to solve (6.10). This algorithm calculates the optimal projection

in min (O(ρK),O(Klog(K)))-time using the greedy selection and soft thresholding,

i.e., by picking the ρ-largest entries of Φi. Mentioned in De�nition 6.1 is an algorithm

1. A subspace trust-region method based on the interior-re�ective Newton

method [Coleman 1996] is applied in which each iteration involves the approximate solution

of a large linear system using the method of preconditioned conjugate gradients (PCG).
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Figure 6.9 � In Algorithm 3, the necessary condition for (6.5) to work is that

the row indices b must satisfy |b| ≥ 2. Assume that |b|=1, then the number of

simplex constraints of (6.5) is equal to n−m ; since |b| = 1, the system of simplex

constraints has a unique solution, which makes (6.5) cannot be optimized. The above

�gure illustrates a simple case where K = 3 so that the size of the subproblem must

satis�es the condition 2 ≤ |b| ≤ K. One can obtain a subproblem by �xing one

out of three unknowns and optimizing with respect to the rest. In this example, the

green coordinate z (the green plane) is �xed at 0.5 so that x+y = 1−z = 0.5, which

means that the values of x and y can be changed with respect to to the constraint

x + y = 0.5. The point (x, y, z) can be anywhere along the line segment which is

the intersection between the plane z = 0.5 and x + y + z = 1 (the gray plane). If

one �xes another coordinate, for example y = 0.3 (the blue plane), then the point

(x, y, z) is permanently stuck at (0.5, 0.3, 0.2) (the red point).

that allows determining adaptively the threshold ρ. See [Kyrillidis 2012, Duchi 2008]

for more details.

De�nition 6.1 Let assume that vector u ∈ RK is sorted in descending order so

that u1 ≥ u2 ≥ . . . ≥ uK . The image of u via the projection P∆ that maps u onto

∆ is v whose coordinates are de�ned as

vi = (P∆ (u))i = (ui − τ)+ , (6.11)

where τ = τρ , τj = 1
j

(∑j

i=1 ui − 1
)
and ρ := max {j : uj > τj}.
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Algorithm 4 Simplex projection algorithm

Input Laplacian matrix L, and label matrix Y whose ` �rst columns are endmem-

bers.

Output Learned semantic maps Ψ∗.

Initialize Ψ(0) with random values

Repeat

1. Solve the quadratic problem (6.8) and set Φ(t) ← Φ∗

2. For k : 1 −→ m

(a) Sort Φ
(t)
k into u : u1 ≥ u2 ≥ . . . ≥ uK

(b) Find index ρ such that ρ := max
{
j : uj ≥ 1

j

(∑j
i=1 ui − 1

)}
(c) Compute τ = 1

ρ (
∑ρ

i=1 ui − 1)

(d) Ψ
(t)
ik = (ui − τ)+, i = 1, . . . ,m.

Until
∥∥∥Ψ(t) −Ψ(t−1)

∥∥∥ ≤ ε

(a) The visualization of Φ (b) The visualization of Ψ

Figure 6.10 � Illustrations of a single step of the simplex projection algorithm

Alg. 4. On the left is the learned embedding Φ via minimizing (6.8). We can see the

smooth change of color in the along paths from one vertex to another. On the right

is the image of Φ via the projection in (6.9). Notice that data points are now lying

on the simplex surface x+ y + z = 1 as a result of simplex constraint.



122 Chapitre 6. Transductive Subspace Learning

(a) Ei�el tower (b) Vosge, Paris (c) Central park, NYC (d) Grand Palais, Paris

Figure 6.11 � Professional use of satellite images includes land management, struc-

tures surveillance, disaster prevention, agriculture (crop, forest) surveillance. For

example, an architect may be interested in �nding buildings with some speci�c

structures while he does not know their names or location. Without tagging infor-

mation, it is di�cult to �nd such structures using systematic image browsing such

as panning and zooming.

6.4 Data Visualization

As the �rst part of this section, we apply (6.1) to data visualization with huge

satellite images and a generic image database. As the second part, Section 6.5 de-

scribes how to deploy visualization results for interactive image search.

6.4.1 Satellite Images

With the rapid growth of remote sensing technology and high performance com-

puters as well as high-speed Internet, mapping services are nowadays emerging

(Google Maps, GeoPortail, Bing, etc.). They are useful in terms of geographical

navigation to professional tasks such as land management, city planning, agricul-

ture, foresting, and large public purposes such as tourism and driving aid. Currently,

locations in satellite images are searchable only if those maps are properly anno-

tated with names about countries, regions, streets, landmarks, etc. (see Fig. 6.11).

Navigating without these metadata turns out to be tedious. For instance, using

conventional navigation tools in order to explore large satellite images � let us say

with more than 10, 000 × 10, 000 pixels � turns out to be helpless. Indeed, naviga-

tion becomes systematic and often tedious as the user spends his e�ort in zooming

(in/out) and shifting from one area to another with the only navigation criterion

being �geographic proximity� ; this burden is further ampli�ed when meta-data are

scarce or unintuitive to the user.

In this experiment we investigate how our proposed method will improve the

way that visual contents are searched in satellite images. An experiment is set up

as follows. The input image is divided into patches using a rectangular grid with

appropriate resolution (Fig. 6.12). The patch size should be adjusted according to

the image resolution otherwise a patch contains too much or few visual object details.

In our experiment, the original satellite image of dimension 6, 876 × 7, 265 pixels,
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Figure 6.12 � A thumbnail view of the real size satellite image is shown in the

right while a particular zoomed region is depicted on the left. As the image is

equally divided into rectangular cells, the amount of semantics contained in every

cell is kept �xed, i.e., if there are more buildings then there is less vegetation (grass,

plantation).

is partitioned into approximately 12, 000 patches of 64 × 64 pixels. Based on these

patches, a k-nearest neighbors graph is constructed with k = 3 ; weights associated

with edges represent visual similarity between patches. This weight is computed

using RBF function (4.10) that fuses visual similarity of color histogram and WLD

features [Chen 2010] (combination of intensity and gradient).

We de�ne K = 4 usual semantics (building, road, vegetation and water) and we

select 15 patch examples per semantic. The underlying membership vectors in Y

are set accordingly as shown in (6.12) ; again we assume that each selected example

includes only one semantic so its corresponding membership vector is pure. Selected

examples, even though few, are representative enough and cover at some extent the

diversity of these four semantics.

Y =


1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

· · ·

0

0

0

0

· · ·

0

0

0

0

vegetation

building

water

road

· · · · · ·

 (6.12)

The learning result is shown in Fig. 6.13 in which just three out of the four

semantics are displayed. Zoomed at the vertices of the simplex are the endmember

patches of the three semantics : building, vegetation, and road. We can observe the

decrease of green area, by tracking appearance changes of image patches, when shift-

ing from semantics of vegetation and road to the semantic of building. For example,

traversing in the visualization from vertex road to building, roads in image patches

become smaller (we are leaving rural areas where there are highways), but more
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Figure 6.13 � At the center is the visualization result of the learned subspace.

This images cloud has the shape of simplex whose extremities at three vertices are

superimposed by pure membership examples (top : �building,� right : �vegetation,�

left : �road�). Traversing along the paths of the simplex (for example paths [1], [2],

[3]), one can observe semantic changes from an extremity to another one.

houses and buildings appear. Approaching near the vertex building, big buildings

and houses dominate image patches. This opens a new way of semantic search in

which the user just scans the visualization on the regions visually similar to his

mental picture.

Satellite images have several special properties. First, image patches are visually

similar to each other within local geographical locations. Thus smooth appearance

changes lead to smooth semantic changes. Second, it is not di�cult to obtain end-

member examples because monotonic scenes are popular, i.e., urban areas with lots

of houses or vast forests. Third, the simplex constraints (abundance of semantics

must sum to one) are easy to satisfy because the sum of proportions of semantic

objects in satellite images corresponds to the �xed size of image patches.

6.4.2 Scene Images

In this section we extend the application of our method to generic images. The

SiftFlow dataset, which is a subset of the LabelMe database, is used in our ex-

periment. The dataset contains 2688 scenes acquired from categories such as coast,

mountain, forest, open country, street, inside city, tall buildings and highways. Those

scenes cover di�erent variations in illumination, perspective, distance, intra-variant

of object appearance. In all of 2688 images, there are approximately 29,000 instances

of 33 object classes. In our experiment, we consider object classes as semantics and

since the number of instances per class is highly imbalanced, 12 most frequent classes
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� compared based on their numbers of instances � are chosen for visualization.

In order to prepare endmember examples, a training set of 200 images is ran-

domly selected from the dataset. Based on the given groundtruth of every training

image, object segments are extracted from the training images (see Fig. 6.15 and

6.16). The set of object segments of all the training data is used as the source of

endmembers. For every semantic (a.k.a object class), 30 segments are chosen ran-

domly ; the number of endmember examples occupies about 1% of the number of

objects in the dataset. The number of endmembers in total is 12 × 30 = 360 while

the number of test points is 2688− 200 = 2488. An a�nity graph of neighborhood

size k = 5 is constructed from 2488 unlabeled images and 360 labeled endmembers.

Similarity measure is computed using Gaussian RBF function (4.10) whose inputs

are four visual descriptors texton histogram, dense-SIFT descriptor histogram, color

histogram, and GIST descriptor.

Shown in Fig. 6.14 and 6.15 are the embedding learned from the SiftFlow dataset.

Similarly to the experiment with satellite images, the dynamic of the data corre-

sponds to the prede�ned semantics while image content smoothly changes when

traversing from a vertex to another (see Fig. 6.17).

6.4.3 Summary

There are two key properties of the visualizations produced by our method. First,

the low-dimensional representation provides an overview of the database, which

serves as the a �page zero� for the user to start his query. This �page zero� is an

overview of the database in which the user can quickly interpret where in the map

his mental target could be found. Second, the new representation is well described

by semantics which help the user to navigate easily. In the following section we will

present an interactive search software Spacious, which is our e�ort in utilizing the

visualization results for search applications.

6.5 Interactive Mental Search

This section introduces our software Spacious for interactive visualization. This

software is our e�ort in experimenting visualization-based search as depicted by the

diagram in Fig. 6.4. The objective of Spacious is to provide a dual view for image

databases. As shown in Fig. 6.18, themanifold view shows the semantic visualization

of a satellite image ; the map view displays images as they are. In the case of satellite

images, the map view shows the whole satellite image, which is also the geographical

map of the location captured in the image. About the technical details of Spacious,

it is built on the top of Partiview 2, a simple but powerful graphics engine that

uses OpenGL for 3D rendering. With this engine, we are able to visualize tens of

thousands image patches in large scale databases.

2. http ://www.haydenplanetarium.org/universe/partiview
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Figure 6.14 � The visualization of three out of twelve semantics of the embedding

learned from scene images. This visualization shows that the learned embedding

can reveal dynamics of the data. Endmember examples of three semantics : sky,

building, and mountain are located at simplex vertices. At every semantic there is

a concentration of images having similar semantic contents. For example, images

containing sky and sea are located near the vertex sky. Moving farther from it,

images with sky and sea are progressively replaced by coast, sand, rock and even

less semantically relevant ones such as tree and mountain. At the barycenter of the

visualization there are images mixing several semantics.

After the learned embedding is loaded into Spacious, the user can explore the

visualization using various supporting tools such as di�erent navigation modes (or-

bital, �ight, rotate, translate), subset selection, subset �ltering, dimension switch-

ing. Especially, dimension switching functionality is useful in case the embedding

has more than three dimensions. It allows the user to select maximum three out of

the dimensions of the embedding. Every time the user interacts with the data in one
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Figure 6.15 � The visualization of Fig. 6.14 with ground truth. Due to appearance

ambiguities, there are some confusions between tree and mountain in the bottom

right corner of the visualization.

of the two views, Spacious synchronizes the two views so that the user always gets

two sources of information, which help him to search more e�ciently.

Initially, Spacious is designed for satellite image navigation. Every data point

in the visualization corresponds to a unique location in the satellite map, and vice-

versa. If the mental query is ��nd a location with the same proportions of vegetation,

road, and building,� then the user �rstly switches three dimensions to the semantics

vegetation, road, and building. Secondly the user uses mouse or sliders in order

to direct the selector (the yellow cube in Fig. 6.21(a)) to focus somewhere at the

barycenter of the simplex (see Fig. 6.19). The locations of the selected patches

are then promptly highlighted in the map view. Navigation tools such as panning,

zooming and subset selection of the map view are available for the user to re�ne
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(a) building (b) car (c) �eld

(d) mountain (e) plant (f) road

(g) sea (h) sky (i) tree

(j) grass (k) sand (l) river

Figure 6.16 � Examples of endmembers taken from 12 object classes in the Sift-

Flow dataset. Since groundtruth (object boundaries) are available for every training

image, we easily obtain endmember examples by masking out irrelevant objects in

images.

Figure 6.17 � From left to right are the images sampled from directed paths along

the visualization of SiftFlow dataset in Fig. 6.14. The top row shows landscape

changes of the path that originates from countryside to mountain. The sampled

images show progressive changes from �eld scenes with bushes to forest scenes with

trees and hills, and �nally to highland. Similarly, the bottom row shows landscape

changes as one traverses from highways to cities.

locations he is interested in. This querying process can be looped for several times

before the user is satis�ed with his �ndings.



6.5. Interactive Mental Search 129

Figure 6.18 � Spacious is dual view. The map view on the right displays geograph-

ical map of the location captured by the satellite image. Systematic navigation tools

such as panning and zooming are used to navigate the map. The manifold view on

the left visualizes the learned low-dimensional embedding. Spatial navigation tools

such as rotation, translation, scaling, and dimension switching are used to inter-

act with the visualization system. Besides, selection tools are equipped in the both

views. Their use is explained by the following example. Assume that the user has

a mental target ; since he already grasped the visualization of the image database,

he probably knows where in the embedding his mental target could be found. The

cube selector (in yellow) is used to select that potential location. The cube size can

be adjusted by the slider focus. The user can clip o� the patches outside the cube so

that he is not distracted. As soon as the selector is positioned, the locations whose

associated patches are within the cube are highlighted as green dots in the map

view. Thus the user knows which geographical locations are selected by the cube.

Patch re�nement can be accomplished in this right view by selecting a sub-group of

highlighted points. This action is promptly updated in the left view. The user either

�nds his mental target or continues to re�ne the result or invokes a new query.



130 Chapitre 6. Transductive Subspace Learning

Figure 6.19 � A snapshot of Spacious captured at the moment of querying satel-

lite image. Three out of four semantics are shown ; their endmember examples are

zoomed and superimposed for clarity. A mental query ��nd a location with the same

proportions of vegetation, road, and building� corresponds to positioning the cube

selector to the barycenter of the visualization. On the right view there is a highlighted

position whose surrounding landscape includes �elds, roads, and houses. Thus this

location satis�es conditions of the mental query. The map preview in the bottom

right shows that the highlighted position is located in rural area, which explains

why there are simultaneous appearance of vegetation, houses, and roads.

6.6 Semantics Ranking and Relevance Feedback

As shown in Section 6.4 and 6.5, our method successfully produces meaning-

ful embeddings and demonstrates their use for interactive search. In this section,

we conduct quantitative analyses in order to measure how good our method can

performs compared to related works. In particular, two problems are investigated :

semantic ranking and image retrieval with relevance feedback. Evaluating the e�-

ciency of information search is not trivial because it relates to subjective judgments

of human users. Nonetheless, there are tasks such as image ranking that can be

evaluated independently from user interaction. However, for the second problem, it

should be evaluated based on real querying. Due to limited time and resources, we

conduct our experiments by simulated querying and feedback.

6.6.1 Semantic Ranking

The objective of semantic ranking is to learn a parametrization of a given im-

age database such that those images are ranked with respect to their semantic

abundances. From this point of view, our method can be considered as a ranking

algorithm because it also learns a representation of the data subject to smooth

changes of semantic content. Together with the smoothness regularizer, simplex
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Figure 6.20 � A snapshot of Spacious captured at the moment of querying images of

the SiftFlow dataset. The dimensions of the manifold view are switched to plant, sky,

and mountain ; their endmember examples (image segments) are superimposed for

clarity. A mental query ��nd photos with sky and plant� corresponds to positioning

the cube selector somewhere at the middle of the simplex edge that connects vertices

plant and sky. On the right view is the thumbnail view of the selected images. A

small selection of the cube results in scenes that share a common con�guration of

open space with horizon.

(a) Shown in the cube are the image patches

selected by the cube selector in Fig. 6.19.

Notice that almost of them have all three

semantic vegetation, building, and road.

(b) Shown in cube are the images selected

by the cube selector in Fig. 6.20. About half

of them are the scenes composed of sky and

plant.

Figure 6.21 � The cube selectors of satellite images and SiftFlow dataset. Notice

that image patches outside the cube are clipped for easy observation.

constraints produce embeddings which are well ranked with respect to multiple se-

mantics. These constraints enforce the tradeo� between semantics of an image such

that the total of semantic abundances sums to one. As a consequence, our subspace
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learning method is di�erent from other approaches [Joachims 2002b, Siddiquie 2011,

Liu 2011b, Lin 2005, Zhou 2003b] in which they just learn a single semantic ranking

function per training. In order to compare with them, we have to convert embedding

coordinates of every data point to membership values which can be used as ranking

scores. For example, in order to rank images of a database with respect to the ith

semantic, then the ith row of Φ is selected and sorted in descending order. It is

trickier to assign ranking scores to multi-semantic queries. Let us denote Q as a set

consisting of semantics mentioned in a mental query and |Q| denotes the number of
semantics contained in Q. Let us de�ne a vector q ∈ RK whose entries qk's equal

1
|Q| only if all |Q| semantics contained in that query have similar proportions. Here

q can be seen as the highest ranked point which contains exactly |Q| semantics with

equal membership values. For example, a double-semantic query has q = [1
2

1
2 ]′ and

a triple-semantic query has q = [1
3

1
3

1
3 ]′. The ranked result of that query is obtained

by sorting in descending order the Euclidean distances ‖q−Φi‖2 between q and

the the embedding {Φi} of the data. Notice that NDCG@k scores are compared

between queries having the same number of semantics.

6.6.1.1 Evaluation Criterion

Normalized Discount Cumulative Gain (NDCG) is used to evaluate ranking per-

formance. NDCG at rank k is de�ned as

NDCG@k =
1

Z

k∑
j=1

2rel(j)−1

log(1 + j)
(6.13)

where rel(j) is the relevance of the jth ranked image and Z is a normalization factor

which guarantees that a perfect ranking result corresponds to NDCG value of 1.

The NDCG formula favors relevant documents appearing higher in the list while

concerns less the ones near the bottom of the list. A list that obtains higher NDCG

is better ranked. For single-semantic queries, rel(j) gets binary value ; for multi-

semantic queries, rel(j) gets integer values in range [1, . . . , |Q|]. The most relevant

images that contain all the mentioned semantics in Q will have rel(j) = |Q| ; the
images that contain (|Q| − 1) out of Q semantics will have rel(j) = |Q| − 1 ; and so

on and so forth.

6.6.1.2 Experimental Setup

SiftFlow dataset. This is the dataset used in the previous sections for data visu-

alization. We choose the 12 most popular object classes out of 33 of the dataset

as the semantic set. We compare single-semantic ranking between our method

and the method proposed in [Kovashka 2012], which is a modi�cation of SVM-

rank [Joachims 2002b]. In this experiment �SVM-rank� is used to denote their

method. We use their implementation available online and run it on the SiftFlow

dataset. For every semantic, an SVM rank function is learned from relevant images

sampled from 200 training images. Among them, 200 random image pairs are chosen
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as the training data for SVM-rank ; within each pair there is a relative comparison

(less than, equal, more than) between the two images subject to the semantic. After

�ltering out any existing duplicate in the 200 pairs, these pairs are used to train the

modi�ed SVM-rank [Kovashka 2012]. We also evaluate multiple-semantic ranking

in which there are 126 double-semantic queries and 1068 triple-semantic queries.

Although multiple-semantic ranking has not been addressed in related works, they

are good indications for us to understand di�culties of the ranking problem when

more criteria are added.

For our part, we construct a similarity graph that connects visually similar image

pairs based on the weight computed by the Gaussian RBF function in (4.10). Four

visual descriptors are used to compute visual similarity : texton histogram, SIFT

histogram, color histogram and GIST.

Outdoor Scene Recognition (OSR) dataset. This dataset reuses the SiftFlow

data with another semantic set. This set consists of 6 scene attributes natural, open,

perspective, size-large, diagonal-plane, and depth-close (see [Oliva 2001a] for more

details). Database groundtruth with respect to this semantic set is provided as predi-

cate matrices in Fig. 6.22. We do not run SVM-rank code with this dataset but re-use

their published result [Kovashka 2012]. For our part, 200 endmembers are randomly

chosen from 2888 images of the dataset ; membership values of these endmember

examples are computed based on the predicate matrices and GIST [Oliva 2001a]

descriptor is used to build a similarity graph. It is important to notice that the

endmember condition is not satis�ed in the case of OSR dataset. This is evident as

we look at the predicate tables, i.e., there is no exclusive occurrence of a semantic

in any of the images in the database. Thus it is interesting to see how good our

method performs in the absence of this condition, which often occurs in real world

databases.

Shoes dataset. This is a subset of the Attribute Discovery Dataset [Berg 2010]

with minor modi�cation made by [Kovashka 2012]. The dataset contains 10 classes

and 14,658 shoes images. Every image can have from at least 1 to maximum 10

attributes. Attributes of the shoes displayed in the image will be the semantics of

that image. For example, this shoes is open, sporty, and feminine ; that shoes is bright

and shiny. The groundtruth of Shoes dataset is predicate rules shown in Fig. 6.22.

Again we reuse the published results in [Kovashka 2012] for Shoes dataset. For our

part, 200 endmembers are randomly chosen from 2888 images ; their membership

values are inferred from the predicate tables in Fig. 6.22. In order to construct a

similarity graph, color histogram and GIST descriptor are fed to (4.10) in order to

compute edge weights between images. Similarly to the case of OSR dataset, Shoes

datasets does not satisfy the endmember condition. However, and as shown in the

following results, the absence of this condition does not prevent our algorithm from

being applied to real world problems e�ectively.
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Figure 6.22 � The predicate matrices of Shoes [Berg 2010, Kovashka 2012] (top

row) and OSR [Oliva 2001b] (bottom row) datasets. Every object class (labeled in

columns) owns a tuple of attributes (labeled in rows). We use those attributes as

semantic concepts for our problem. Every entry of a row represents the likelihood

P (object|attribute) ; these likelihoods are normalized with respect to every row. On

the right are the binary membership tables, which are the thresholded versions of

the left ones. While training data preparation uses predicate rules from the left

matrices, the right ones are used in ranking evaluation (binary membership values

indicate whether an object or image contains that object is relevant to an attribute).

6.6.1.3 Discussion

Comparative results on the three datasets are shown in Fig. 6.23 ; our method

performs better than SVM-rank with LabelMe and Shoes datasets and worse with

OSR dataset. This may be due to high correlation between semantics in OSR dataset

(see the predicate rules of OSR dataset in Fig. 6.22). For example, semantics within

groups perspective, size-large, diagonal-plane, depth-close and natural, open are mu-

tually correlated. Due to this property, the endmember condition mentioned in (6.1)

cannot be satis�ed. In other word, labeled examples of OSR dataset are not pure

endmembers, i.e., labeled images contain more than one semantic. Equivalently,

those examples are not positioned at the vertices of the simplex so the learned rep-

resentation tends to collapse forming a straight line. This behavior is attenuated

with Shoes dataset despite the use of labeled data which are not necessarily pure

endmembers. Indeed, we observe that these data are not very correlated with each

other (see again Fig. 6.22) and hence not grouped into clusters but well scattered in

the simplex. We also observe from experiments that ranking, with multiple seman-
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(a) LabelMe dataset
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(c) Shoes dataset

Figure 6.23 � Evaluation of image ranking problem between semantic subspace

learning (SSL) and SVM-rank [Kovashka 2012]. The vertical axis NDCG is the Nor-

malized Discount Cumulative Gain that favors relevant documents ranked near the

top of the list ; the horizontal axis is the top K documents of the ranked list. SSL-

1, -2, -3 denote single-, double-, and triple-semantic ranking results. Note that the

SVM-rank curve is single semantic.
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tics, is more di�cult than ranking with a single semantic. Indeed, by comparing the

curves SSL-1, SSL-2, and SSL-3, it is clear that more semantics make the ranking

task more di�cult.

6.6.2 Images Search with Relative Feedback

A search result with high NDCG is just a basic indicator of a good image search

system. Thus one needs a closer look on how querying happen in order to exactly

evaluate the e�ciency of search systems. Spending less time for querying and re-

trieving is desirable. In this section, we measure the e�ciency of an image search

system which is de�ned as the required time for a querying process to obtain desired

results. Such a measure is di�cult to be computed because evaluating a query is

mostly done implicitly and subjectively by the user. In order to measure it, rele-

vance feedback is introduced into the querying process. By counting the amount of

feedbacks for a query process to retrieve the initial mental target, the e�ciency can

be estimated. A system that uses less feedbacks is more preferred. As shown at the

end of this section, our method achieves better evaluation result in all the three

datasets SiftFlow, OSR, and Shoes.

6.6.2.1 Relative Feedback

This idea is proposed by [Kovashka 2012] and its goal is to change the

way that feedback is given. Recall that conventional relevance feedback mecha-

nisms [Zhou 2003c, Ferecatu 2007] require the user to judge on the relevance be-

tween his target and few images sampled from the retrieved result of the previous

iteration ; these sampled images are used to guide the next iteration, i.e., images

similar to these exemplars should appear more. With relative feedback, relevance

decisions of the user are not binary but with comparison in terms of semantics.

For instance, �there are less buildings in these images than my target.� For such a

relative feedback, we understand that in the next iteration the system should �nd

images with more buildings. When combined with ranking algorithms, relative feed-

back becomes more e�cient. In particular, if an image is ranked at kth with respect

to the semantic i, then it certainly contains more amount of the semantic i than

images at (k + 1)th, (k + 2)th, etc., and less amount of semantic i than images at

(k−1)th, (k−2)th, . . ., 2nd, 1st. If a relative feedback states that kth image has more

semantic i than the target, images ranked below kth are excluded from subsequent

search iterations. In other word, the search space is narrowed down quickly.

6.6.2.2 Feedback Simulation

Due to limited resources 3, our experiments use randomization and ground truth

in order to simulate human behaviors in querying and giving feedback. A query is

3. Experiments with user feedback are ideal if human users can anticipate the test and give

�real� queries as well as feedbacks ; they are more subjective, hence, re�ect how mental querying

happens in practice.
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Figure 6.24 � This is an example of mental querying using relative feedback. On

the leftmost is the simulated target that the user wants to �nd. Next, every column

corresponds to two reference images randomly chosen from retrieved results of the

previous iteration. For every reference image, one feedback is created based on a

randomly chosen semantic. For example, the simulated target is �less sporty� and

�more pointy-at-the-front� compared with the black shoe at the top row and the

white shoe at the bottom row. Until the 5th iteration, we can see the resemblance

between the retrieved results (shoes at the rightmost column) and the simulated

target.

created by randomly picking one image from the database ; this image is considered

as the mental target. Its identity is of course kept secret during the querying pro-

cess. However, its semantic properties are accessible for relative feedback. In order

to start querying, initial examples are necessary. For this problem, 16 images � cho-

sen randomly from the given database � de�ne a �page zero.� k images (k = 2, 4, 8)

from page zero are randomly chosen as references ; for every reference, a semantic is

randomly chosen in order to compare, in terms of membership value, with that of

the corresponding semantic of the mental target. Each comparison is a relative feed-

back. If k references are used, then there are k feedbacks. In subsequent iterations,

references will not be the 16 initial images but selected from retrieved result of the

previous iteration. The search will not stop before 10 iterations unless the target is

found.

As mentioned above, search e�ciency is measured in terms of the average number

of feedbacks required in order to �nd the mental target. However, this criterion does

not tell us how much time is spent by the user within each iteration to spot images.

It turns out that the mental target is easier to be found if it is ranked � with respect

to semantic criteria accumulated from feedbacks � near to the top of the list. This is

logical because the rank of the target should be raised to the top as more feedbacks

are provided. As a result, search e�ciency is evaluated based on the target rank

versus the number of feedbacks. In order to rank retrieved results, a relevance score

is maintained for every image ; this score is increased by one if the image associated

with it must satisfy all the relative semantic comparisons mentioned in k feedbacks
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at tth iteration. The rank of the simulated mental target is reported after every

feedback ; higher ranks mean the retrieval algorithm is more e�cient.

6.6.2.3 Discussion

In this experiment we set the number of feedbacks per iteration k = 2. We

randomize 100 queries and report the average ranks of the simulated targets at

every iteration and show it in Fig. 6.25 ; an example is illustrated in Fig. 6.24. Our

method outperforms SVM-rank on all the three datasets. This is clearly seen with

LabelMe than OSR or Shoes datasets. Again, it is due to the lack of pure membership

condition in both OSR and Shoes datasets. For the case of OSR dataset, our method

slightly outperforms SVM-rank with OSR dataset while our ranking evaluation is

worse than SVM-rank. It seems that feedback quality, not ranking quality, is the

key factor of search e�ciency. Due to the lack of human factor in this experiment,

the visualization aspect of our method was not taken into account. The presence of

visualization part may improve further search e�ciency.

6.7 Summary

In this chapter we introduced a novel semantic subspace learning method ; a low-

dimensional embedding is learned based on a transductive approach. The proposed

formula is convex and can be solved using any generic QP solver. Two optimization

algorithms are derived in order to solve this formula for large-scale problems. Based

on our method, we propose an interactive search scenario in which the user seeks

for his mental target by navigating in a semantic visualization of the input image

database. A software with an interactive interface is also developed. Besides, our

method is also useful for conventional problems such as ranking and image retrieval.

Extensive empirical results on three datasets have shown that our method obtains

competitive performance.

A major drawback of our method is the dense distribution of the data at the

simplex barycenter. For large-scale data, this makes the visualization less clear. In

order to resolve this problem, our plan is to induce sparsity into the embedding. If

the data admit a sparse representation, every data point has just few memberships

so that the data will no longer concentrate around the simplex barycenter.

In the long term, we can deploy the proposed method by building a complete

search application. Experiments with human users are also necessary to evaluate

the e�ciency of this application.
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Figure 6.25 � Evaluation of search e�ciency that uses relative feedback with se-

mantic subspace learning (SSL) and SVM-rank [Kovashka 2012] on three datasets.

The vertical axis is the relevance score of the mental target ; this score is recorded at

every feedback iteration as shown in the horizontal axis. As shown in these �gures,

the rank of the mental target is improved when more feedbacks are available, i.e., a

smaller rank means that the mental target moves near to the top of the ranked list.

It is easier for the user to discover his target if it is around the top.





Chapitre 7

Conclusions and Perspectives

7.1 Summary

Our research problem is to design new transductive algorithms for image in-

terpretation and search. It is motivated by the suitability of transductive inference

to computer vision problems which emerge along with the rapid growth of mul-

timedia. Given a classi�cation problem with training and test data drawn from

an unknown distribution P , transductive classi�ers transfer categorical information

from the training to the provided test data but not to other unseen data. This is

in opposite to inductive classi�ers which learn decision rules which generalize well

to arbitrary test point (also drawn from P ). Our motivation in adopting transduc-

tive learning is twofold. First, training data is expensive or even scarce to obtain.

Second, using both training and test data for learning may provide better results.

Based on transuctive setting, we proposed algorithms for two fundamental computer

vision problems : i) a novel transductive learning algorithm is proposed in order to

solve binary classi�cation problems, which are frequently used in object detection,

recognition, and automatic annotation ; ii) a novel transductive subspace learning

algorithm is proposed as an e�ective solution for semantic-based image search and

ranking. A common characteristic of these problems is that each of these algorithms

learns a low-dimensional representation from data. However, the former learns a

linearly separable representation whose dimensionality is �nite and bounded. The

latter learns a representation which is semantically interpretable to human users ;

in other word, the learning outcome is a manifold embedded in a �nite-dimensional

semantic subspace.

The thesis consists of four main chapters : Chapter 3, 4, 5 are dedicated to

transductive kernel learning which are applicable to object segmentation, scene in-

terpretation, and image annotation ; Chapter 6 is dedicated to the semantic sub-

space learning whose applications include data visualization, image ranking, image

retrieval with relevance feedback.

7.1.1 Transductive Kernel Learning

Initially in Chapter 3, interactive object segmentation is used to validate the ba-

sic formula of transductive kernel learning. Given a test image where objects in that

image are marked by the user, our algorithm �nds a complete labeling, i.e., segment-

ing the whole shape of those marked objects and identifying them. Interpretation

results of our method are compared and found to be better than related inductive
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and transductive methods. We derive more sophisticated variants based on the basic

formula and presented them in Chapter 5 ; performance evaluations of these variants

are conducted on the scene interpretation problem � the non-interactive version of

the object segmentation problem presented in Chapter 3. With this non-interactive

version, training data is automatically retrieved based on a given test image so

that user intervention is not required. We tested our methods with the standard

scene dataset SiftFlow [Russell 2007b] ; comparison results show that our method is

competitive with state of the arts.

Besides scene interpretation, the proposed transductive kernel learning is also

applied to image annotation and this is presented in Chapter 4. Notice that image

annotation is just one step before image search : every test image is assigned few

labels re�ecting semantic contents brought by that image ; searching for an image(s)

having some semantic properties is equivalent to searching for an annotated image(s)

with corresponding semantic labels.

There already exist many transductive methods but almost all of them follow the

implicit feature mapping approach (see again Section 2.3). The transductive kernel

learning is novel in the sense that it learns an explicit mapping and this mapping is

linearly separable according to max-margin fashion. The advantage of explicit map-

ping is twofold. First, our method is model-free because we do not have to choose

prede�ned kernels and tune their parameters. Second, it is theoretically guaranteed

that a �nite dimensional mapping generalizes better to data. Our idea is to factorize

the input data into a basis and a kernel map with respect to the low-rank condition

of the map ; furthermore, the transduction setting enforces a smoothly varying kernel

map in order to di�use labels from training to test data. The optimization procedure

adopts alternating minimization ; at every iteration the kernel map to be learned is

optimized conditioned on its linear discrimination with respect to a jointly learned

max-margin classi�er. According to the spirit of transduction adopted in our formu-

lation, the learned kernel map and the classi�er use both information provided in

training and test data in order to predict more precise ; however the inference result

is not available to unseen data.

The transductive kernel map method is then extended to multi-class problems

with data dependency. In particular, we derive the multi-class kernel map learning

in which multiple classi�ers share one kernel map. Due to this, we can introduce

domain knowledge into our formula so that it can model relationships between data

points. Such relationships can be statistical correlations between classes. Those are

similarities in languages, taxonomies, and origins ; for instance, there exist correla-

tions between reef and coral, Scotland and whiskey, ruin and Pharaoh. Those are

co-occurrences in daily life such as window always occurs with building and sky is

above mountain. When incorporated into the basic formula of transductive kernel

learning as convex regularizers, these modelings improve labeling results.
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7.1.2 Semantic Subspace Learning

Chapter 6 is a fresh view of image search. Di�erent from the annotation-based

search methods introduced Chapter 4, we proposed a novel mental search model

in which a visualization of the image database is the interaction mean between

the user and the database ; a representation is learned such that dynamics of the

data are well aligned with respect to prede�ned semantics. Keywords are no longer

used to annotate semantic contents ; instead the coordinates of every image in the

representation correspond to the membership values of the semantics presented in

that image. Finding a mental target corresponds to navigate inside the visualization

according to the the semantic memberships of the target.

In particular, our new transductive dimensionality reduction technique learns a

low-dimensional representation given a prede�ned semantic subspace. The novelty

lies in the transductive setting and constraints of the semantic subspace ; they bring

interpretation � which is absent in unsupervised dimensionality reduction techniques

� into the learned representation. About the former condition, it enforces a smooth

variation of membership values from endmembers to other endmembers. About the

latter condition, our algorithm requires a small amount of labeled data and we call

them endmembers because they must contain exclusively one and only one seman-

tic. Furthermore, if an image (labeled or unlabeled) contains a mix of semantics, or

equivalently speaking it has memberships of several semantics, then the total mem-

bership values must equals one. It turns out that the coordinates of every image

in the learned embedding are also the membership values and the data is supposed

to lie on the surface of the unit simplex. As the optimization converges, the im-

age database is mapped into points in the de�ned semantic coordinate system ; any

mental target can be found into this space as a point whose coordinates re�ect the

amounts of semantics present in that target.

7.2 Discussions and Perspectives

7.2.1 Representation Learning

Targeted to either classi�cation or visualization, our algorithms aim to learn

suitable representations. This depends a lot on extracting and selecting features.

The reality however is that we still know very little about the working mechanism

of human visual cortex (parts of the brain served for visual perception) so that we

do not know how to build descriptive and discriminative features. Currently, mostly

machine learning algorithms use hand-crafted features and o�-the-shelf similarity

functions so that mistakes caused by visual variability (intra-class variation, object

camou�age, uneven illumination, etc.,) are unavoidable. One of promising trends of

machine learning is how to design �exible representation learning techniques that

depend less on domain-speci�c knowledge engineering. In order to achieve this �exi-

bility, learning methods are often based on generic priors. These priors, as analyzed

in [Bengio 2012] and Chapter 2, include smoothness, natural clustering, and mani-
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fold.

Smoothness Prior

The smoothness prior is so essential that it is present in almost

learning algorithms, especially non-parametric ones, i.e., SVM [Cortes 1995],

MRF [Ephraim 1989]. In the case of SVMs, prediction value ŷ of a data point x

is obtained based on the interpolation ŷ =
∑

i αiyiκ(xi,x) + b where {xi} are a

subset of training samples (also called support vectors). If the kernel κ(·, ·) is the

Gaussian RBF (its graph is a bell-shaped one) then the similarity between x and

xi exponentially decreases as the distance between x and xi increases. If x is near

to xi, then the prediction should smoothly vary from yi to ŷ, i.e., yi ≈ ŷ.
Kernel machines use the smoothness prior by default and this is also true for

other non-parametric methods. When the amount of training data is insu�cient,

semi-supervised learning such as Laplacian SVM [Belkin 2006] uses unlabeled data 1

as a bridge between training to test data for the smoothness prior to be held. In

these cases, the smoothness prior guarantees smooth predictions across the data (see

Section 2.4.2).

Non-parametric methods however su�er from the curse of dimensional-

ity [Scholkopf 2001b, Lee 2007]. Addressed in [Chapelle 2006b] and more recent in

[Bengio 2012], the smoothness prior just well behaves in low-dimensional spaces

because a high-dimensional volume is too spacious for the data to be considered

as �smooth.� That is why we stated earlier in Chapter 3 that a �nite-dimensional

representation may provide better generalization. Besides restricting dimensionality

of the learned representation so that (local) smoothness still holds, adopting non-

local learning [Bengio 2005] is another way to defeat the curse of dimensionality.

Deep learning 2 realizes this idea by learning features from data using deep neural

networks.

Althought not mentioned in [Bengio 2012] as a solution to circumvent the curse

of dimensionality, however, the di�usion process [Lafon 2004] is also a way to in-

corporate non-local information into learning. By di�using label information from

training to test data, prediction of a test point is computed based on not only

close-by training data but also remote ones. As shown in optimization algorithms,

our method also includes this prior. This may explain why our method is more

performant than LapSVM in all the experiments of Chapter 3 and 4.

Cluster Prior

Previously stated in Chapter 2, the cluster prior is about natural partition of

data into groups. The notion of group is de�ned as an area with relative higher den-

sity of data distribution than the surrounding. The cluster prior moves beyond the

smoothness prior because it considers not only locality but also natural formations

1. In the case of transduction, unlabeled data is also the test data.
2. http://deeplearning.net/

http://deeplearning.net/
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of data (as known in Chapter 2, points belong the the same cluster are likely get-

ting the same labels). Based on this prior, Transductive SVM [Vapnik 1977] obtains

better results than Laplacian SVM [Belkin 2006] in the automatic image annotation

task (see Chapter 4) ; however, Transductive SVM is not better than Laplacian SVM

in the interactive object segmentation task (see Chapter 3) because the amount of

data in every segmentation problem is just few hundreds so that it is insu�cient in

order to form clusters.

Manifold Prior

The prior assumes that there exists an underlying low-dimensional structure

that generates the data (see Section 2.5.3). Due to properties of manifolds, which

are the low dimensionality and the smoothness, manifold learning techniques �nd

their use mainly in data visualization, for example Isomap [Tenenbaum 2000],

LLE [Roweis 2000], LE [Belkin 2001], SNE [Hinton 2002] and our work in Chap-

ter 6. In the study of [Weinberger 2006], they pointed out that manifold learning

does not tend to bene�t classi�cation. Coordinate-free is another disadvantage of

manifold learning because there is no explicit way to map new data into learned

manifolds. While Nystrom extension (see Section 2.3.2) can provide such a map-

ping, it is data-dependent thus unstable.

Deep Learning

These approaches [Bengio 2009, Bengio 2012] learn semantic representations of

images from raw data based on semantic hierarchy of images. In other word, this

prior is the abstraction of semantic concepts across multiple levels : low-level fea-

tures such as pixel intensity, color, textures at the lowest level are aggregated into

more meaningful visual parts and objects at higher levels. Based on this prior, deep

learning methods are able to learn representations which are at least as good as

hand-crafted ones. Currently deep models have achieved state of the art in many

problems including object recognition [Krizhevsky 2012]. However, deep learning has

a burden of hyperparameters to be tuned and determining network architectures is

like an art.

7.2.2 Learning by Transduction : Revisited

As introduced in Chapter 2 and 3, learning by transduction concerns predicting

values of an implicit decision function at particular test points ; induction does more

than that : it learns that decision function so that the prediction for a test point is

available everywhere. Semi-supervised learning, in the other hand, uses unlabeled

data in order to improve the generalization of the decision function to be learned.

There are technical di�erences between (inductive) semi-supervised and (inductive)

supervised methods but induction and transduction are two di�erent philosophical

point of views.
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As stated in Chapter 3, given su�cient amount of test data, then transduction is

supposed to exploit knowledge about probability distribution of data. The necessary

condition of transduction is the presence of more than one test point. More test data

provide more information about their distribution. This is bene�cial especially when

labeled data is scarce. However, this is not the only situation where transduction is

better than induction. The availability of test data is a good opportunity to exploit

its special structure, for instance the dependencies between data points. Recall that

data dependency is often domain-speci�c and not considered in conventional statis-

tical learning methods (see Section 2.1) ; nevertheless, we demonstrated in Chapter 4

and 5 how transduction exploits data dependency from test data.

7.2.3 Semantic Endmembership

A problem of semantic subspace learning algorithm is the endmember condition.

Just for a reminder, this condition states that labeled examples must contain only

one semantic and semantics should be uncorrelated one from another. It turns out

from our experiments that this condition guarantees a good visualization ; however

it is not easy to meet in practice except of some speci�c data domains such as satel-

lite images. For generic images, endmember examples are rare because they often

contain several semantics and entangled in complex ways. Thus the lack of endmem-

ber examples is a major obstacle for our method to be applied widely in di�erent

domains. A solution for this problem may be like the ability to factorize seman-

tic endmember features from training data and to use them instead of endmember

examples.

7.2.4 Data Imbalance and Regularizations

Data imbalance frequently occurs in vision databases and it is not only due to

extrinsic reasons in acquisition and sampling but also being an intrinsic property.

For instance, road always appear in highway scenes but that is not true for car ;

thus the occurrence frequency of road is higher than that of car. The impact of

imbalanced data to non-parametric models � whose predictions are computed based

on (a part of) training data � is even worse. This explains why our method su�ers

from the same problem 3.

We have tried various ways in order to reduce the e�ect of data imbalance. A

straightforward solution is to rebalance the data, which means to modify training

data (re-sampling, duplicating, pruning) such that the proportions of training data

per class become equal. An alternative is to reweight training losses in optimization

equations (positive and negative classes in the case of binary classi�cation). Since the

imbalance is an intrinsic property of data, those rebalancing methods are super�cial.

Our solution is to exploit categorical dependency from data. We focus on strong

3. The di�usion process of the optimization algorithm favors popular classes so that rare object

classes are hardly detected (Chapter 4) or popular classes tend to have higher recall rates compared

to less popular ones (Chapter 5).
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correlations between classes, especially between a more- and less-frequent classes. For

instance, correlations are modeled as co-occurrence probabilities conditioned on the

spatial adjacency between two objects in the same image. A high prediction result

of more frequent classes will support less-frequent ones if they are highly correlated.

This modeling is applicable for any problem whose data includes dependencies.

7.3 Future Works

There are still rooms for improvement in our thesis. For the transductive kernel

learning algorithm, similarity connections between data points of adjacency graph

can be made more precise by using learned distance functions subject to visual

classes ; it means that label information of every class is di�used on its own graph

whose edge connections are customized based on the most discriminative features

of that class. For the semantic subspace learning algorithm, the learned embedding

may admit sparse solution with respect to the number of semantics contained in

every image. The sparsity is not only the nature of image semantic but also a way

to reduce the data density concentrated at the barycenter of the simplex.

For long-term goals, we believe that learning by transduction is promising in the

era of big data. Instead of using inductive techniques in order to learn generalized

but in�exible decision rules, we can select a subset of labeled data which are relevant

to test data and invoke transductive settings. An e�ective transductive learning in

the future may apply transduction approach and several generic priors in order to

learn more powerful kernels.





Annexe A

Transductive Kernel Learning for

Imbalanced Data

In Chapter 3 we introduced the transductive kernel map method and how that

su�ers from imbalanced data. This phenomena is also observed in multi-class prob-

lems. In Chapter 4 the label-dependency model alleviates the e�ect of data imbalance

by introducing label correlation into the formula (4.6). In this appendix we intro-

duce the variant of our method for binary classi�cation problems with imbalanced

data. Let us start by reminding the objective function of transductive kernel map

learning

min
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(A.1)

where the factorization X ≈ BΦ is due to learn an overcomplete basis B ∈ Rn×p
(i.e., p > n) and a new kernel map Φ ∈ Rp×m. Subsequent terms in (A.1) respectively

enforce the kernel map to be low-dimensional, linear separability, and smoothness.

Inequality constraints in (A.1) mean that labeled data points Φi's must be correctly

classi�ed with respect to their labels yi's.

Let us assume that the classi�cation problem (A.1) is imbalanced, in the fol-

lowing we introduce the transductive kernel learning with extra regularizers used to

control the e�ect of imbalanced data
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(A.2)

where the hinge loss is de�ned as (·)+ = max (0, ·). Positive cost coe�cients C+ and

C− penalize a test point to be classi�ed respectively as positive and negative class.

Without loss of generality, let us assume that there are much more negative than

positive training data, then in order to rebalance the labeling result of test data, C−

must be set larger than C+. In the opposite case where negative data is much less

than positive one, we set C+ to be smaller than C−. Return to our case, test points

will move toward the positive half-space because C+ is smaller than C− ; once they

left the negative half-space and goes into the other half-space, they will be penalized
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Figure A.1 � A toy data example of imbalanced data ; enlarged markers denote

labeled data while smaller square dots denote unlabeled ones. The labeling result

(shown in colors) demonstrates that (A.4) can balance test data.

by a cost C+ in order to prevent them moving �too far.� The larger C− than C+ is,

the more test points are labeled as positive (see Fig. A.2).

In order to make (A.2) easier to solve, hinge losses are replaced by two-halve

parabols of the form y = ϕ (x)x2 (see Fig. A.1) in which the coe�cient ϕ(x) is

de�ned as

ϕ (x) =


C+

2 i� x > 0
C−

2 i� x < 0

0 i� x = 0

. (A.3)

The new formula is rewritten as follows :

argmin
B,w,Φ

1
2 ‖w‖

2
2 + µ

2 ‖Φ‖
2
F + 1

2w′Φ

(
βL + Q

)
Φ′w + α

2

∥∥∥∥( X

Y

)
−
(

B 0n×p
01×p w′

)(
Φ

ΦC

)∥∥∥∥2

F

s.t ‖Bi‖22 = 1, ∀i = 1, . . . , p

.

(A.4)

which is very similar to the original problem (3.5) except that (A.4) has the matrix

Q = diag

0, . . . , 0︸ ︷︷ ︸
`

, ϕ (w′Φ`+1) , . . . , ϕ (w′Φm)

. The optimization algorithm of

(A.4) is listed in Algorithm 5 and an example with toy data is shown in Fig. A.1.
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Algorithm 5 Transductive Kernel Map Learning with Balancing Constraint

Input : labeled {(xi, yi)}`i=1 and unlabeled data {xi}mi=`+1, graph Laplacian L

Initialization : compute normalized graph Laplacian L = I −A with normalized

a�nity matrix A and D = I ; t← 0

Repeat

1. Compute Q = diag

0, . . . , 0︸ ︷︷ ︸
`

, ϕ (w′Φ`+1) , . . . , ϕ (w′Φm)


2. Update classi�er

w(t+1) = α

(
Ip + Φ (αC + βL + Q) Φ′

)−1

ΦCY

3. Update basis

argmax
λ

[
argmin

B

(
1

2
‖X−BΦ‖2F +

p∑
i=1

λi
(
‖Bi‖22 − 1

))]
,

⇒ B(t+1) = XΦ′
(
ΦΦ′ + diag(λ∗)

)−1

4. Update kernel map Φ(t+1) = Ψ̃ where Ψ̃ = lim
τ→τmax

Ψ(τ) and

Ψ
(τ)
i =

(
µI+αB′B+(αCii+βDii+Qii)ww′

)−1[
α(B′X+wYC)+βww′Ψ(τ−1)A

]
i

Until
∥∥Φ(t+1) −Φ(t)

∥∥ ≤ ε
Output : kernel maps {Φi}mi=`+1 and labels {yi}mi=`+1 where yi =

(
w(t+1)

)′
Φ(t+1)
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Figure A.2 � Left : the graphs of the negative (blue) and positive (red) data-

rebalancing losses ; straight lines are hinge losses whose proxies are two-halves

parabolas. Right : given three test points (colored as pink) are lying on the nega-

tive half-space ; since C− > C+, then these points tend to move toward the positive

half-space after few iterations and their new positions are marked as green points.



Annexe B

Transductive Kernel Learning

with Nuclear Norm

In order to induce the low-rank property into Φ, the nuclear norm is used :

min
Φ,W,B

f(B,W,Φ) + ‖Φ‖∗
s.t ‖Bi‖22 = 1, i = 1, . . . ,m

(B.1)

in which

f(B,W,Φ) =
α

2

(
‖X−BΦ‖2F +

∥∥Y −W′ΦC
∥∥2

F

)
+ βtr(W ′ΦLΦ′W) +

1

2
‖W‖2F .
(B.2)

The above constrained optimization problem can be solved using Augmented La-

grangian Multiplier [?] and Singular Value Thresholding [Cai 2010] by introducing

the auxiliary variable J and the multiplier matrix Z :

min
Φ,J,W,B,Z

f(B,W,Φ) + ‖J‖∗ + tr (Z ′(Φ− J)) + µ
2‖Φ− J‖2F

s.t ‖Bi‖22 = 1, i = 1, . . . ,m
(B.3)

Alternating minimization can be used to optimize for every variable while �xing

the rest. Since J decouples Φ from the nuclear norm, the low-rank approximation

problem can be easily solved without relating to the complex term f(B,W,Φ). The

optimization algorithm is derived in the following.
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Algorithm 6 j

Input : labeled {(xi, yi)}`i=1 and unlabeled data {xi}mi=`+1, graph Laplacian L

Initialization : compute normalized graph Laplacian L = I −A with normalized

a�nity matrix A and D = I ; t← 0

Repeat

1. Update W(t+1) :

W∗ ← α
(
I + Φ(αC + βL)Φ′

)−1
(ΦCY) (B.4)

2. Update J(t+1) :

J∗ ← argmin
1

µ
‖J‖∗ +

1

2
‖J− (Φ + Z/µ)‖2F (B.5)

3. Update kernel map Φ(t+1) = Ψ̃ where Ψ̃ = lim
τ→τmax

Ψ(τ), Ψ(0) = Φ(t) and

Ψ
(τ)
i ←

(
µI + B′B + [αC + βL]iiWW′

)−1

[
α(B′X + WYC) + βWW′Ψ(τ−1)A + (µJ− Z)

]
i

(B.6)

4. check the convergence conditions

‖Φ− J‖∞ < ε (B.7)

5. update the multipliers

Z = Z + µ(Φ− J) (B.8)

6. update the parameters µ := µρ where ρ is step size.

7. update basis B by

argmin
B

1
2‖X−BΦ‖2F

s.t ‖Bi‖22 = 1, i = 1, . . . ,m
(B.9)

Until
∥∥Φ(t+1) −Φ(t)

∥∥ ≤ ε
Output : kernel maps {Φi}mi=`+1 and labels {yi}mi=`+1 where yi =

(
w(t+1)

)′
Φ(t+1)



Annexe C

More on the Convergence of

Kernel Map Optimization

Proposition C.0.1 Let hyperplane w classi�es training data {(xi, yi)}`i=1 at a mar-

gin ρ, then the upper bound for β to satisfy the Proposition 1 is

β <
8ρ2

m
(C.1)

where m is the total number of training and test data.

Proof. As mentioned in Proposition 1, the iterated function ψ(·) convergences if
β < ‖ww′‖−1

1 ‖A‖
−1
1 . We �rst relate ‖ww′‖1 to the margin concept. According to

the de�nition of margin in max-margin classi�cation methods such as SVM, ρ is

proportional to the inverse of ‖w‖2 (see (D.7) in Appendix D), i.e. ‖w‖2 = 1
2ρ . The

following inequality always holds

‖ww′‖1 =

p∑
i,j=1

‖wiwj‖1 >
p∑
i=1

w2
i = ‖w‖22 =

1

4ρ2
. (C.2)

Given that the a�nity matrix A is normalized so that the corresponding degree

matrix D is an identity matrix, then

‖A‖1 =
m∑
i=1

m∑
j=1

Aij =
1

2

m∑
i=1

Nk(i)∑
j=1

Aij =
1

2

m∑
i=1

Dii =
m

2
. (C.3)

Combining (C.2) and (C.3) into (3.9), we obtain the bound

β <
1

‖w‖1
· 1

‖A‖1
< 4ρ2 · 2

m
=

8ρ2

m
(C.4)

�
Even though the bound (C.1) derived in Proposition C.0.1 is looser than what

mentioned in Proposition 3.3.1, nevertheless it provides insightful interpretations

about relationships between the smoothness, the max-margin classi�cation, and data

quantity.

First, (C.1) states that the smoothness is proportional to the margin width ;

if the margin is large, then the smoothness can be enforced more into the kernel

learning process in order to speed up the convergence speed ; if the margin is small,
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the smoothness should be controlled in order to keep the monotonical decrease of

ψ(·), which guarantees the convergence of the kernel map (L-Lipschitz continuity in

which L < 1). This could be comprehensibly understood by observing the evolution

of kernel maps in the toy example Fig. 3.2 while adjusting β.

Second, (C.1) reveals interesting facts about the behavior of kernel map learning

when introducing more data. If m is large, then β should be small ; this makes

sense because more data mean more connections between data points which boost

the label di�usion process ; therefore β should be smaller in order to guarantee the

kernel learning convergences with L-Lipschitz continuity in which L < 1.

Notice that the margin ρ is not a �xed quantity in our formulation because it

can be controlled via adjusting the value of the coe�cient α. For instance, if α

is small while minimizing w and keeping Bi's at unit magnitudes, kernel maps at

training points are more likely to move further from the hyperplane (due to the

minimization of the squared loss on the training data), which widens the margin ρ.

In brief, parameter tuning for α and β can be done systematically via the smoothness

bound (C.1).



Annexe D

Support Vector Machine

Primal SVM

Given a set of training data {(xi, yi)}ni=1 drawn from an unknown distribution

P in the joint domain X × Y where Y = {−1,+1} and a feature map φ : X →
H associated in which H is some high-dimensional space, our goal is to learn a

linear classi�er f(φ(x)) = 〈w, φ(x)〉 + b that separates negative (−1) points from

positive (+1) points while generalizing well to unseen data (also drawn from P ).

The classi�er is characterized by the normal vector w and the intercept b. Thus

our objective corresponds to searching for a tuple (w, b) satisfying the following

inequality constraint

yi (〈w, φ(xi)〉+ b) ≥ 0, i = 1, . . . , n. (D.1)

Shown in Fig. D.1(a) are di�erent solutions of the separating hyperplane f satisfying

(D.1). Since there is more than one solution, our question is �whether there is ex-

ist a solution that optimally generalizes to unseen data.� Support Vectors Machine

(SVM) [Vapnik 1998b] is such a solution. The idea of SVM is to �nd a hyperplane

that maximally separates the positive from the negative data ; the maximal separa-

tion is expressed by the margin concept, denoted as ρ (see Fig. D.1). Based on the

margin concept, the inequality constraints (D.1) are rewritten as follows

yi (〈w, φ(xi)〉+ b) ≥ ρ, ∀i = 1, . . . , n. (D.2)

By increasing ρ, the uncertainty of predictions is decreased. Since the value of ρ

cannot be larger than half of the geometric distance between the two convex hulls

of positive and negative samples, then the margin ρ is guaranteed to be bounded

(given w and b are not set to in�nite). SVM aims to �nd the optimal minimizers w

and b, given that φ is �xed, such that ρ is maximized ; its objective is equivalent to

the following optimization problem

(w∗, b∗)← arg max
w,b,ρ≥0

ρ s.t. yi (〈w, φ(xi)〉+ b) ≥ ρ, i = 1, . . . , n, . (D.3)

Since ρ can be made arbitrarily large by increasing w to in�nity, we prevent this by

normalizing w to have an unit magnitude :

max
w,b,ρ≥0

ρ2 s.t. yi

(〈
w
‖w‖ , φ(xi)

〉
+ b
)
≥ ρ, i = 1, . . . , n, . (D.4)

Notice in (D.4) that the energy term ρ is replaced by ρ2 without changing the

original objective function. Since w and b are not constrained in their magnitudes,
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(a) Multiple solutions for linear separation. (b) Maximal margin separation.

Figure D.1 � The classi�cation problem considered by linear SVM. Blue dots are

negative examples ; red dots are positive examples ; encircled dots are support vec-

tors ; the solid lines are the decision boundary ; the dashed lines are margins and

the green lines denote margin widths.

we can rescale them with an amount of 1
ρ in order to eliminate the margin variable

ρ,

max
w,b,ρ≥0

ρ2 s.t. yi

(〈
w
‖w‖ρ , φ(xi)

〉
+ b

ρ

)
≥ 1, i = 1, . . . , n, (D.5)

or equivalently with the substitutions w̃ = w
‖w‖ρ and b̃ = b

ρ ,

min
w̃,b̃

‖w̃‖2 s.t. yi

(
〈w̃, φ(xi)〉+ b̃

)
≥ 1, i = 1, . . . , n. (D.6)

The equivalence between (D.6) and (D.5) is based on the following fact

‖w̃‖ =

∥∥∥∥ w

‖w‖ ρ

∥∥∥∥ =
1

|ρ|
·
∥∥∥∥ w

‖w‖

∥∥∥∥ =
1

ρ
. (D.7)

Consequently, (D.3) is equivalent to

(w∗, b∗)← arg min
w,b

1
2 ‖w‖

2 s.t. yi (〈w, φ(xi)〉+ b) ≥ 1, i = 1, . . . , n. (D.8)

Dual SVM

In order to solve (D.1), one uses Lagrange multiplier method in order to trans-

form it into the dual form which is easier to solve ; the dual form allows us to apply

kernel trick (see Appendix E) in order to apply SVM to nonlinear data. The dual

form of (D.1) is

L =
1

2
‖w‖2 +

n∑
i=1

(αi − αiyi (〈w, φ(xi)〉+ b)) (D.9)
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in which αi's are non-negative Lagrange multipliers and the number of multipliers

equals to that of inequality constraints. Since L is convex with respect to w and

b and the derivatives ∂αiL = 0, (D.8) is equivalent to the following maximization

problem conditioned on the vanishing points of the derivatives ∂wL and ∂bL :

max
αi

∑
i
αi − 1

2

∑
i,j
αiαjyiyj 〈φ(xi), φ(xj)〉 s.t. αi ≥ 0, ∀i , (D.10)

where

∂wL = w −
∑
i

αiyiφ(xi) = 0⇐⇒ w =
∑
i

αiyiφ(xi), (D.11)

and

∂bL =
∑
i

αiyi = 0. (D.12)

The meaning of (D.11) is that w∗ is the weighted combination of the support vectors

φ(xi)'s whose αi's are non-zero.

From Section 2.3 and Appendix E, we know that kernel methods allows us to

replace the dot-product 〈φ(xi), φ(xj)〉 in (D.10) by the kernel value κ(xi,xj). As a

result,(D.10) can be rewritten as

max
αi

∑
i
αi − 1

2

∑
i,j
αiαjyiyjκ(xi,xj) s.t. αi ≥ 0, i = 1, . . . , n. (D.13)

Similarly, the decision function of SVM can also be written using the kernel notion

f(x) =
n∑
i=1

αiyi 〈φ(xi), φ(x)〉+ b =
n∑
i=1

αiyiκ(xi,x) + b. (D.14)

This function exhibits an important property of SVM that it is a non-parametric

method in which a subset of training data is selected based on two conditions max-

margin and data separation. This subset is kept for future prediction of unseen

data. The decision is computed based on local similarities imposed by kernel κ(·, ·)
between a test point x and support points xi's of the selected subset.
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Kernel Trick

As known in previous sections, the kernel trick allows non-parametric methods

such as SVM to be applied to nonlinear data with an inexpensive cost. In this

appendix we give a brief overview on some theoretical aspects of kernel trick. More

explanation can be found in [Scholkopf 2001b].

De�nition E.1 (Gram Matrix) Given a function κ : X×K → R and a �nite sam-

ple {x1, . . . ,xn} ⊂ X , the square matrix K ∈ Rn×n whose entries Kij = κ(xi,xj)

is called the Gram matrix (of kernel matrix) with respect to {xi}'s.

De�nition E.2 (Positive Semi-De�nite Matrix) A matrix K ∈ Rn×n satisfy-

ing x′Kx ≥ 0, ∀x ∈ Rn is called positive (semi-)de�nite.

De�nition E.3 (Kernel) A function κ on X × X which for all n ∈ N and all

{x1, . . . ,xn} ⊂ X gives rise to a positive (semi-)de�nite Gram matrix is called a

(positive semi-de�nite) kernel.

In the following we de�ne a map φ from X into the space H of functions mapping

X into R as
φ : X → H

x 7→ κ(·,x)
, (E.1)

then we will show that i) H is equipped with a dot-product and ii) any posi-

tive de�nite kernel κ(·, ·) can be thought of as a dot-product in another space :

〈φ(x), φ(z)〉 = κ(x, z).

Firstly, let us assume that H as a vector space closed with addition and multi-

plication

H =

{ n∑
i=1

αiκ(·,xi) : αi ∈ R,xi ∈ X , n ∈ N
}
, (E.2)

given f ∈ H and g ∈ H, we de�ne

〈f, g〉 =

n∑
i=1

m∑
j=1

αiβjκ(xi,xj), (E.3)

in which

f(·) =

n∑
i=1

αiκ(·,xi) (E.4)

and

g(·) =

m∑
j=1

βjκ(·, zj). (E.5)
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We will prove that 〈·, ·〉 is a dot-product ofH. From (E.3) and the fact that κ(x, z) =

κ(z,x), then the dot-product 〈·, ·〉 is symmetric. Furthermore, 〈·, ·〉 is bilinear and
positive de�nite because

〈f, g〉 =
n∑
i=1

m∑
j=1

αiβjκ(xi, zj) =
n∑
i=1

αig(xi) =
m∑
j=1

βjf(zj), (E.6)

and

〈f, f〉 =
n∑

i,j=1

αiαjκ(xi,xj) ≥ 0. (E.7)

Therefore feature space H is associated with a dot-product 〈·, ·〉. �
Based on (E.5), we obtain g(·) = κ(·, z) as a result of substituting m = 1 and

β1 = 1 ; applying this result into (E.6) we obtain the reproducing property, i.e.,

〈f, κ(·, z)〉 =

n∑
i=1

αiκ(xi, z) = f(z). (E.8)

If we set f = κ(·,x) (assign n = 1 and α1=1 in (E.4)) and g = κ(·, z), then (E.8)

gives us the desired property :

〈f, g〉 = 〈κ(·,x), κ(·, z)〉 (C.1)= 〈φ(x), φ(z)〉 (C.3)= κ(x, z), (E.9)

which means any positive (semi-)de�nite kernel can be thought of as a dot-product

in another space. �
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Transductive Inference for Image Interpretation and Search
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Inference transductive pour l’interpretation
et la recherche d’images

Dinh-Phong VO

RESUME : Dans cette thèse, on s’intéresse à l’apprentissage automatique pour trai-
ter deux problèmes fondamentaux en vision par ordinateurs. Le premier concerne l’in-
terprétation d’images qui consiste à classer des images ou des objets en catégories.
Les techniques classiques sont généralement inductives et exigent des données d’ap-
prentissage étiquetées afin d’apprendre explicitement des classifieurs. Dans certaines
applications, les données d’apprentissage étiquetées sont rares ce qui affecte les capa-
cités de généralisation des classifieurs sous-jacents. Dans cette thèse on s’intéresse à
l’apprentissage transductif qui vise à estimer la réponse d’un classifieur implicite sur un
ensemble fini incluant à la fois les données d’apprentissage et de test.

On présente d’abord un nouveau cadre d’apprentissage transductif des noyaux pour
l’interprétation des images. Cette méthode, contrairement aux noyaux classiques, ap-
prend une projection explicite des noyaux, en exploitant la topologie des données d’ap-
prentissage et de test. Le problème d’optimisation sous-jacent vise à minimiser une éner-
gie mélangeant i) un terme de reconstruction, qui décompose une matrice des données
en un produit impliquant un dictionnaire et une nouvelle représentation liée au noyau ap-
pris, ii) un terme d’attache aux données qui assure la consistance des étiquettes inférées
par rapport à celles des données d’apprentissage et iii) un terme de régularisation qui ga-
rantit des étiquettes similaires pour des données semblables. La représentation du noyau
et le critère de décision obtenus garantissent la séparabilité linéaire des données et de
bonnes performances de généralisation. En partant de cette formulation, on propose une
extension qui permet d’exploiter les dépendances contextuelles et les liens sémantiques
entre les catégories d’images afin d’améliorer encore plus les performances de notre
méthode d’annotation et d’interprétation des images. Cette extension a été motivée par
des expériences en psychologie, qui montrent que les informations contextuelles sont
essentielles et permettent de faciliter la reconnaissance d’objets chez les humains.

Le deuxième problème abordé dans la thèse concerne la recherche mentale dans les
bases d’images. Au départ, on rappelle les limites des paradigmes de recherche clas-
siques (basés sur les mots clés, exemples visuels et requêtes par croquis) dans l’inter-
prétation des requêtes mentales des utilisateurs ; notamment lorsque les cibles mentales
des utilisateurs sont difficiles à exprimer avec des mots clés ou lorsque les exemples des
requêtes ne sont pas disponibles. La solution alternative proposée construit une repré-
sentation qui préserve la topologie globale des données en les projetant dans un espace
Euclidien exprimé à travers une base sémantique. L’avantage de la méthode est double ;
d’une part elle permet de réduire significativement la dimension des données, et d’autre
part, la méthode permet de définir une nouvelle représentation des données qui est plus
facile à exploiter par l’utilisateur afin de retrouver sa cible. Ainsi, retrouver une cible men-
tale revient simplement à scanner et pointer les données selon leurs coordonnées dans
l’espace sémantique appris. Les expériences effectuées en visualisation, ordonnance-
ment et recherche d’images avec contrôle de pertinence, sur des bases génériques,
montrent que l’approche proposée est effective.

MOTS-CLEFS : cartes du noyaux, l’apprentissage transductive, classification, réduc-
tion de la dimensionnalité, visualisation



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT : In this thesis, we use machine learning in order to tackle two funda-
mental problems of computer vision. The first one is image interpretation which consists
in classifying images and objects into categories. Conventional inductive learning models
require some training data from which classifiers are learned. If training data is scarce,
classifiers hardly generalize well to test data. We are interested in transductive learning -
the approach that aims to estimate the response of an implicit classifier at particular test
points using both training and test data.

We first introduce a new transductive kernel learning framework for image interpreta-
tion. Our method, in contrast to many usual kernels, learns an explicit kernel map based
on topological structure of both training and test data. The underlying optimization pro-
blem minimizes an energy function mixing i) a reconstruction term that decomposes a
matrix of input data as a product of a learned dictionary and a kernel map ii) a fidelity
term that ensures consistent label predictions with respect to those provided by training
data and iii) a smoothness term which guarantees similar labels for neighboring data.
The resulting decision criterion and the new kernel map guarantee the linear separa-
bility of training data and good generalization performance. Based on this formulation,
we also study how to harness contextual dependencies between categories into images
and how to use their semantic relationships during inference in order to further improve
image annotation and scene understanding performances. This extension was motiva-
ted by experiments in psychology, which have shown that contextual information includes
important cues for human vision in order to recognize objects effortlessly.

The second fundamental problem is mental search ; we address the limitation of cur-
rent multimedia search paradigms (based on keywords, image examples, and sketches)
in interpreting mental targets of users, especially if those targets are difficult to express
verbally or visual examples are not ready to hand. We introduce a novel alternative so-
lution which builds a mapping that preserves the global topology of the input data while
associating them into an Euclidean subspace spanned by well defined semantics. The
advantage of the method is twofold. On the one hand, it significantly reduces the dimen-
sionality of the data ; on the other hand, it defines a new data representation which is
more friendly and easy to use. Thereby, searching for a mental target simply reduces
to scanning and targeting data according to their coordinates in the learned semantic
subspace. Quantitative evaluations in data visualization, image ranking and retrieval with
relevance feedback, using generic image databases, show that the proposed method is
effective.

KEY-WORDS : kernel maps, transductive learning, classification, dimensionality re-
duction, visualization


